用一维几何ah -等距法研究中性粒细胞实态分析

Mohammad Abobala, M. B. Zeina
{"title":"用一维几何ah -等距法研究中性粒细胞实态分析","authors":"Mohammad Abobala, M. B. Zeina","doi":"10.54216/gjmsa.030103","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to study and define the neutrosophic real functions with one neutrosophic variable depending on the geometric isometry (AH-Isometry), with a lot of concepts from real analysis including continuality, differentiability, integrability. We have presented the formal forms of different popular functions in neutrosophic environment like logarithmic function, exponential function, trigonometric functions. Rising neutrosophic numbers to any power is well defined including rising to neutrosophic powers.","PeriodicalId":299243,"journal":{"name":"Galoitica: Journal of Mathematical Structures and Applications","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Study of Neutrosophic Real Analysis by Using the One-Dimensional Geometric AH-Isometry\",\"authors\":\"Mohammad Abobala, M. B. Zeina\",\"doi\":\"10.54216/gjmsa.030103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to study and define the neutrosophic real functions with one neutrosophic variable depending on the geometric isometry (AH-Isometry), with a lot of concepts from real analysis including continuality, differentiability, integrability. We have presented the formal forms of different popular functions in neutrosophic environment like logarithmic function, exponential function, trigonometric functions. Rising neutrosophic numbers to any power is well defined including rising to neutrosophic powers.\",\"PeriodicalId\":299243,\"journal\":{\"name\":\"Galoitica: Journal of Mathematical Structures and Applications\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Galoitica: Journal of Mathematical Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/gjmsa.030103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galoitica: Journal of Mathematical Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/gjmsa.030103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用实数分析中的连续性、可微性、可积性等概念,研究并定义了几何等距(ah -等距)上具有一个中性变量的中性实函数。介绍了中性粒细胞环境中常用的对数函数、指数函数、三角函数等函数的形式。中性粒细胞数量上升到任何大国都是明确的,包括上升到中性粒细胞大国。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Neutrosophic Real Analysis by Using the One-Dimensional Geometric AH-Isometry
The objective of this paper is to study and define the neutrosophic real functions with one neutrosophic variable depending on the geometric isometry (AH-Isometry), with a lot of concepts from real analysis including continuality, differentiability, integrability. We have presented the formal forms of different popular functions in neutrosophic environment like logarithmic function, exponential function, trigonometric functions. Rising neutrosophic numbers to any power is well defined including rising to neutrosophic powers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信