0-1背包问题的模式引导进化算法

Yan Liu, Chao Liu
{"title":"0-1背包问题的模式引导进化算法","authors":"Yan Liu, Chao Liu","doi":"10.1109/IACSIT-SC.2009.31","DOIUrl":null,"url":null,"abstract":"A Schema-Guiding Evolutionary Algorithm (SGEA) is proposed in this paper. The novel SGEA has many good features. It proposes the schema-modified operator to adjust the distribution of the population. What's more, it constructs an elite-schema space and proposes the cluster-center schema to guide the direction of individual's evolution. And by such two strategies, the diversity of the population and the local and global search power can be greatly improved. The experimental results show that the SGEA proposed in this paper has many better performances, compared with other methods such as simple genetic algorithm, greedy algorithm and so forth.","PeriodicalId":286158,"journal":{"name":"2009 International Association of Computer Science and Information Technology - Spring Conference","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"A Schema-Guiding Evolutionary Algorithm for 0-1 Knapsack Problem\",\"authors\":\"Yan Liu, Chao Liu\",\"doi\":\"10.1109/IACSIT-SC.2009.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Schema-Guiding Evolutionary Algorithm (SGEA) is proposed in this paper. The novel SGEA has many good features. It proposes the schema-modified operator to adjust the distribution of the population. What's more, it constructs an elite-schema space and proposes the cluster-center schema to guide the direction of individual's evolution. And by such two strategies, the diversity of the population and the local and global search power can be greatly improved. The experimental results show that the SGEA proposed in this paper has many better performances, compared with other methods such as simple genetic algorithm, greedy algorithm and so forth.\",\"PeriodicalId\":286158,\"journal\":{\"name\":\"2009 International Association of Computer Science and Information Technology - Spring Conference\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Association of Computer Science and Information Technology - Spring Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACSIT-SC.2009.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Association of Computer Science and Information Technology - Spring Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACSIT-SC.2009.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

提出了一种模式导向进化算法(SGEA)。小说《SGEA》有许多优点。提出了一种模式修正算子来调整种群的分布。构建精英模式空间,提出集群中心模式,引导个体进化方向。通过这两种策略,可以大大提高人口的多样性以及本地和全球搜索能力。实验结果表明,与简单遗传算法、贪心算法等方法相比,本文提出的SGEA算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Schema-Guiding Evolutionary Algorithm for 0-1 Knapsack Problem
A Schema-Guiding Evolutionary Algorithm (SGEA) is proposed in this paper. The novel SGEA has many good features. It proposes the schema-modified operator to adjust the distribution of the population. What's more, it constructs an elite-schema space and proposes the cluster-center schema to guide the direction of individual's evolution. And by such two strategies, the diversity of the population and the local and global search power can be greatly improved. The experimental results show that the SGEA proposed in this paper has many better performances, compared with other methods such as simple genetic algorithm, greedy algorithm and so forth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信