弥合单细胞和种群动态的时间尺度

Srividya Iyer-Biswas, Herman Gudjonson, Charles S. Wright, Jedidiah Riebling, Emma R. Dawson, Klevin Lo, Aretha Fiebig, S. Crosson, A. Dinner
{"title":"弥合单细胞和种群动态的时间尺度","authors":"Srividya Iyer-Biswas, Herman Gudjonson, Charles S. Wright, Jedidiah Riebling, Emma R. Dawson, Klevin Lo, Aretha Fiebig, S. Crosson, A. Dinner","doi":"10.1103/PhysRevX.8.021007","DOIUrl":null,"url":null,"abstract":"How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to replication-competent (stalked) stage of the {\\em Caulobacter crescentus} lifecycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For {\\em C. crescentus} cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time, and thus yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell age distribution, and the quiescence timescale.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Bridging the time scales of single-cell and population dynamics\",\"authors\":\"Srividya Iyer-Biswas, Herman Gudjonson, Charles S. Wright, Jedidiah Riebling, Emma R. Dawson, Klevin Lo, Aretha Fiebig, S. Crosson, A. Dinner\",\"doi\":\"10.1103/PhysRevX.8.021007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to replication-competent (stalked) stage of the {\\\\em Caulobacter crescentus} lifecycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For {\\\\em C. crescentus} cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time, and thus yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell age distribution, and the quiescence timescale.\",\"PeriodicalId\":119149,\"journal\":{\"name\":\"arXiv: Quantitative Methods\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevX.8.021007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevX.8.021007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

单个细胞的随机生长和分裂的颗粒细节如何反映在种群数量的平滑确定性增长中?我们通过制定一个数据验证的理论框架来解释单细胞和种群尺度上的观察结果,提供了一个集成的、多尺度的微生物生长动力学视角。对于对称和非对称细胞分裂,我们推导出细胞年龄分布和人口增长率作为潜在分裂时间分布的函数的精确解析完整的时间依赖解。这些结果为随机单细胞动力学对种群增长的惊人影响提供了见解。利用我们对不对称分裂的结果,我们推断了{\em Caulobacter crescent}生命周期从繁殖静止(群集)到繁殖能力(跟踪)阶段的过渡时间。值得注意的是,种群数量可以随时间自发地振荡。我们阐明了导致这些种群振荡的物理原理。对于{\em C. crescentus}细胞,我们表明,在给定的生长条件下,对种群增长率的简单测量足以表征特定条件的细胞时间单位,从而产生平均(单细胞)生长和分裂时间尺度,细胞分裂时间的波动,细胞年龄分布和静止时间尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging the time scales of single-cell and population dynamics
How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to replication-competent (stalked) stage of the {\em Caulobacter crescentus} lifecycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For {\em C. crescentus} cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time, and thus yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell age distribution, and the quiescence timescale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信