逆散射问题的高频极限:从逆Helmholtz到逆Liouville的渐近收敛

Shi Chen, Zhiyan Ding, Qin Li, Leonardo Zepeda-N'unez
{"title":"逆散射问题的高频极限:从逆Helmholtz到逆Liouville的渐近收敛","authors":"Shi Chen, Zhiyan Ding, Qin Li, Leonardo Zepeda-N'unez","doi":"10.1137/22m147075x","DOIUrl":null,"url":null,"abstract":"We investigate the asymptotic relation between the inverse problems relying on the Helmholtz equation and the radiative transfer equation (RTE) as physical models, in the high-frequency limit. In particular, we evaluate the asymptotic convergence of a generalized version of inverse scattering problem based on the Helmholtz equation, to the inverse scattering problem of the Liouville equation (a simplified version of RTE). The two inverse problems are connected through the Wigner transform that translates the wave-type description on the physical space to the kinetic-type description on the phase space, and the Husimi transform that models data localized both in location and direction. The finding suggests that impinging tightly concentrated monochromatic beams can indeed provide stable reconstruction of the medium, asymptotically in the high-frequency regime. This fact stands in contrast with the unstable reconstruction for the classical inverse scattering problem when the probing signals are plane-waves.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"924 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-frequency limit of the inverse scattering problem: asymptotic convergence from inverse Helmholtz to inverse Liouville\",\"authors\":\"Shi Chen, Zhiyan Ding, Qin Li, Leonardo Zepeda-N'unez\",\"doi\":\"10.1137/22m147075x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the asymptotic relation between the inverse problems relying on the Helmholtz equation and the radiative transfer equation (RTE) as physical models, in the high-frequency limit. In particular, we evaluate the asymptotic convergence of a generalized version of inverse scattering problem based on the Helmholtz equation, to the inverse scattering problem of the Liouville equation (a simplified version of RTE). The two inverse problems are connected through the Wigner transform that translates the wave-type description on the physical space to the kinetic-type description on the phase space, and the Husimi transform that models data localized both in location and direction. The finding suggests that impinging tightly concentrated monochromatic beams can indeed provide stable reconstruction of the medium, asymptotically in the high-frequency regime. This fact stands in contrast with the unstable reconstruction for the classical inverse scattering problem when the probing signals are plane-waves.\",\"PeriodicalId\":185319,\"journal\":{\"name\":\"SIAM J. Imaging Sci.\",\"volume\":\"924 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Imaging Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m147075x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m147075x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在高频极限下,以亥姆霍兹方程和辐射传递方程(RTE)为物理模型,研究了反问题之间的渐近关系。特别地,我们评估了基于Helmholtz方程的广义逆散射问题对Liouville方程(RTE的简化版本)的逆散射问题的渐近收敛性。通过将物理空间上的波动型描述转化为相空间上的动力学型描述的Wigner变换和将数据定位于位置和方向的Husimi变换将这两个反问题连接起来。这一发现表明,撞击紧密集中的单色光束确实可以提供稳定的介质重建,在高频区域渐近。这与探测信号为平面波时经典逆散射问题的不稳定重构形成了鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-frequency limit of the inverse scattering problem: asymptotic convergence from inverse Helmholtz to inverse Liouville
We investigate the asymptotic relation between the inverse problems relying on the Helmholtz equation and the radiative transfer equation (RTE) as physical models, in the high-frequency limit. In particular, we evaluate the asymptotic convergence of a generalized version of inverse scattering problem based on the Helmholtz equation, to the inverse scattering problem of the Liouville equation (a simplified version of RTE). The two inverse problems are connected through the Wigner transform that translates the wave-type description on the physical space to the kinetic-type description on the phase space, and the Husimi transform that models data localized both in location and direction. The finding suggests that impinging tightly concentrated monochromatic beams can indeed provide stable reconstruction of the medium, asymptotically in the high-frequency regime. This fact stands in contrast with the unstable reconstruction for the classical inverse scattering problem when the probing signals are plane-waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信