减少单通量量子电路在路由过程中的最大连接长度

Ting-Ru Lin, M. Pedram
{"title":"减少单通量量子电路在路由过程中的最大连接长度","authors":"Ting-Ru Lin, M. Pedram","doi":"10.1109/ISEC46533.2019.8990897","DOIUrl":null,"url":null,"abstract":"As the number of nets connecting single-flux-quantum (SFQ) cells in large-scale SFQ circuits grows, powerful electronic design automation (EDA) tools are needed to mitigate the wire routing task. Moreover, the clock frequency of SFQ circuits is heavily influenced by the longest wire delay. However, current routing tools have no means to control the maximum length of routing wires. In this paper, we present an innovative post-routing optimization framework which reduces the maximum wirelength in SFQ circuits. A framework is developed in which the longest wire is ripped and re-routed by resorting to a maze routing algorithm after the acquisition of wire density distribution using a machine learning method. Based on the MIT-LL SFQ5ee process technology and using a small library of SFQ logic cells, we show that the proposed framework can complete post-routing optimization of 13 SFQ circuits in 8 minutes while reducing the length of the longest wire by 11.8% on average over the state-of-the-art EDA routing tool for large-scale SFQ circuits.","PeriodicalId":250606,"journal":{"name":"2019 IEEE International Superconductive Electronics Conference (ISEC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing the Maximum Length of Connections in Single Flux Quantum Circuits During Routing\",\"authors\":\"Ting-Ru Lin, M. Pedram\",\"doi\":\"10.1109/ISEC46533.2019.8990897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the number of nets connecting single-flux-quantum (SFQ) cells in large-scale SFQ circuits grows, powerful electronic design automation (EDA) tools are needed to mitigate the wire routing task. Moreover, the clock frequency of SFQ circuits is heavily influenced by the longest wire delay. However, current routing tools have no means to control the maximum length of routing wires. In this paper, we present an innovative post-routing optimization framework which reduces the maximum wirelength in SFQ circuits. A framework is developed in which the longest wire is ripped and re-routed by resorting to a maze routing algorithm after the acquisition of wire density distribution using a machine learning method. Based on the MIT-LL SFQ5ee process technology and using a small library of SFQ logic cells, we show that the proposed framework can complete post-routing optimization of 13 SFQ circuits in 8 minutes while reducing the length of the longest wire by 11.8% on average over the state-of-the-art EDA routing tool for large-scale SFQ circuits.\",\"PeriodicalId\":250606,\"journal\":{\"name\":\"2019 IEEE International Superconductive Electronics Conference (ISEC)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Superconductive Electronics Conference (ISEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEC46533.2019.8990897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Superconductive Electronics Conference (ISEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEC46533.2019.8990897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着大规模SFQ电路中连接单通量量子(SFQ)单元的网络数量的增加,需要强大的电子设计自动化(EDA)工具来减轻布线任务。此外,SFQ电路的时钟频率受最长线延迟的影响很大。然而,目前的布线工具没有办法控制布线线的最大长度。在本文中,我们提出了一个创新的路由后优化框架,它减少了SFQ电路的最大带宽。开发了一种框架,在使用机器学习方法获取线材密度分布后,通过迷宫路由算法将最长的线材撕开并重新路由。基于MIT-LL SFQ5ee工艺技术并使用小型SFQ逻辑单元库,我们表明所提出的框架可以在8分钟内完成13个SFQ电路的路由后优化,同时比最先进的EDA大规模SFQ电路路由工具平均缩短最长导线长度11.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing the Maximum Length of Connections in Single Flux Quantum Circuits During Routing
As the number of nets connecting single-flux-quantum (SFQ) cells in large-scale SFQ circuits grows, powerful electronic design automation (EDA) tools are needed to mitigate the wire routing task. Moreover, the clock frequency of SFQ circuits is heavily influenced by the longest wire delay. However, current routing tools have no means to control the maximum length of routing wires. In this paper, we present an innovative post-routing optimization framework which reduces the maximum wirelength in SFQ circuits. A framework is developed in which the longest wire is ripped and re-routed by resorting to a maze routing algorithm after the acquisition of wire density distribution using a machine learning method. Based on the MIT-LL SFQ5ee process technology and using a small library of SFQ logic cells, we show that the proposed framework can complete post-routing optimization of 13 SFQ circuits in 8 minutes while reducing the length of the longest wire by 11.8% on average over the state-of-the-art EDA routing tool for large-scale SFQ circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信