基于近似相似度自连接策略的近重复视频检测

H. B. D. Silva, Zenilton K. G. Patrocínio, G. Gravier, L. Amsaleg, A. Araújo, S. Guimarães
{"title":"基于近似相似度自连接策略的近重复视频检测","authors":"H. B. D. Silva, Zenilton K. G. Patrocínio, G. Gravier, L. Amsaleg, A. Araújo, S. Guimarães","doi":"10.1109/CBMI.2016.7500278","DOIUrl":null,"url":null,"abstract":"The huge amount of redundant multimedia data, like video, has become a problem in terms of both space and copyright. Usually, the methods for identifying near-duplicate videos are neither adequate nor scalable to find pairs of similar videos. Similarity self-join operation could be an alternative to solve this problem in which all similar pairs of elements from a video dataset are retrieved. Nonetheless, methods for similarity self-join have poor performance when applied to high-dimensional data. In this work, we propose a new approximate method to compute similarity self-join in sub-quadratic time in order to solve the near-duplicate video detection problem. Our strategy is based on clustering techniques to find out groups of videos which are similar to each other.","PeriodicalId":356608,"journal":{"name":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Near-duplicate video detection based on an approximate similarity self-join strategy\",\"authors\":\"H. B. D. Silva, Zenilton K. G. Patrocínio, G. Gravier, L. Amsaleg, A. Araújo, S. Guimarães\",\"doi\":\"10.1109/CBMI.2016.7500278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The huge amount of redundant multimedia data, like video, has become a problem in terms of both space and copyright. Usually, the methods for identifying near-duplicate videos are neither adequate nor scalable to find pairs of similar videos. Similarity self-join operation could be an alternative to solve this problem in which all similar pairs of elements from a video dataset are retrieved. Nonetheless, methods for similarity self-join have poor performance when applied to high-dimensional data. In this work, we propose a new approximate method to compute similarity self-join in sub-quadratic time in order to solve the near-duplicate video detection problem. Our strategy is based on clustering techniques to find out groups of videos which are similar to each other.\",\"PeriodicalId\":356608,\"journal\":{\"name\":\"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2016.7500278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2016.7500278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大量冗余的多媒体数据,如视频,已经成为空间和版权方面的问题。通常,用于识别近重复视频的方法既不充分,也不能扩展到查找相似视频对。相似性自连接操作可能是解决该问题的一种替代方法,其中从视频数据集中检索所有相似的元素对。然而,相似性自连接方法在应用于高维数据时性能较差。为了解决近重复视频检测问题,我们提出了一种新的近似方法在次二次时间内计算相似度自连接。我们的策略是基于聚类技术来找出彼此相似的视频组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-duplicate video detection based on an approximate similarity self-join strategy
The huge amount of redundant multimedia data, like video, has become a problem in terms of both space and copyright. Usually, the methods for identifying near-duplicate videos are neither adequate nor scalable to find pairs of similar videos. Similarity self-join operation could be an alternative to solve this problem in which all similar pairs of elements from a video dataset are retrieved. Nonetheless, methods for similarity self-join have poor performance when applied to high-dimensional data. In this work, we propose a new approximate method to compute similarity self-join in sub-quadratic time in order to solve the near-duplicate video detection problem. Our strategy is based on clustering techniques to find out groups of videos which are similar to each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信