机器人健康优化自动化程度的模型预测控制

C. Braun, Aniketh Ramesh, S. Rothfuss, Manolis Chiou, Rustam Stolkin, S. Hohmann
{"title":"机器人健康优化自动化程度的模型预测控制","authors":"C. Braun, Aniketh Ramesh, S. Rothfuss, Manolis Chiou, Rustam Stolkin, S. Hohmann","doi":"10.1109/SACI58269.2023.10158596","DOIUrl":null,"url":null,"abstract":"Adjusting operator support in human-machine systems is a promising way of combining operator involvement with high overall system performance. Adaptive automation aims to achieve this goal without burdening the operator with the task of selecting and setting the desired amount of support. In this work, two novel adaptive automations are presented. We use the performance measure of “robot health” to formulate the optimal control problem of maximizing the robot health of a human-robot system through the adaption of operator support to develop two model predictive controllers. The first one considers discrete levels of operator support, or levels of automation, the second one uses the continuous conception of the degree of automation. We report on a proof-of-concept simulation study evaluating the proposed model predictive controllers in a collaborative teleoperation of a mobile robot; the results demonstrate the ability of both model predictive controllers to successfully arbitrate control between the operator and the robot’s controller to maximize robot health.","PeriodicalId":339156,"journal":{"name":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Predictive Control of the Degree of Automation Optimizing Robot Health\",\"authors\":\"C. Braun, Aniketh Ramesh, S. Rothfuss, Manolis Chiou, Rustam Stolkin, S. Hohmann\",\"doi\":\"10.1109/SACI58269.2023.10158596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adjusting operator support in human-machine systems is a promising way of combining operator involvement with high overall system performance. Adaptive automation aims to achieve this goal without burdening the operator with the task of selecting and setting the desired amount of support. In this work, two novel adaptive automations are presented. We use the performance measure of “robot health” to formulate the optimal control problem of maximizing the robot health of a human-robot system through the adaption of operator support to develop two model predictive controllers. The first one considers discrete levels of operator support, or levels of automation, the second one uses the continuous conception of the degree of automation. We report on a proof-of-concept simulation study evaluating the proposed model predictive controllers in a collaborative teleoperation of a mobile robot; the results demonstrate the ability of both model predictive controllers to successfully arbitrate control between the operator and the robot’s controller to maximize robot health.\",\"PeriodicalId\":339156,\"journal\":{\"name\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI58269.2023.10158596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI58269.2023.10158596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在人机系统中调整操作员支持是一种很有前途的方法,可以将操作员参与与高整体系统性能相结合。自适应自动化旨在实现这一目标,而无需让操作员承担选择和设置所需支持量的任务。在这项工作中,提出了两种新的自适应自动化。利用“机器人健康”这一性能指标,通过自适应算子支持开发两种模型预测控制器,提出了人-机器人系统中机器人健康最大化的最优控制问题。第一个考虑离散的操作员支持水平,或自动化水平,第二个使用自动化程度的连续概念。我们报告了一项概念验证仿真研究,评估了在移动机器人协同远程操作中提出的模型预测控制器;结果表明,两种模型预测控制器都能够成功地在操作者和机器人控制器之间进行仲裁控制,以最大化机器人的健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Predictive Control of the Degree of Automation Optimizing Robot Health
Adjusting operator support in human-machine systems is a promising way of combining operator involvement with high overall system performance. Adaptive automation aims to achieve this goal without burdening the operator with the task of selecting and setting the desired amount of support. In this work, two novel adaptive automations are presented. We use the performance measure of “robot health” to formulate the optimal control problem of maximizing the robot health of a human-robot system through the adaption of operator support to develop two model predictive controllers. The first one considers discrete levels of operator support, or levels of automation, the second one uses the continuous conception of the degree of automation. We report on a proof-of-concept simulation study evaluating the proposed model predictive controllers in a collaborative teleoperation of a mobile robot; the results demonstrate the ability of both model predictive controllers to successfully arbitrate control between the operator and the robot’s controller to maximize robot health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信