LQTS2对二维心脏组织局部细胞解偶联的影响

P. Priya, M. Reddy
{"title":"LQTS2对二维心脏组织局部细胞解偶联的影响","authors":"P. Priya, M. Reddy","doi":"10.1109/BIBE.2017.00-24","DOIUrl":null,"url":null,"abstract":"Ischemia in presence of drug induced long QT syndrome 2 (LQTS2) predisposes the tissue to Torsade de pointes (TdP). Reentrant arrhythmias occurring during phase 1B of ischemia have been primarily associated with areas of cellular uncoupling and hyperkalaemia. This study aims to investigate how a region of lowered gap junction conductance (GJC) in presence of LQTS2 can initiate a TdP. Here, a discrete grid of 250x100 cells interconnected using GJCs is taken representing a portion of the transmural wall with anisotropic conduction velocities. LQTS2 is introduced by reducing the potassium current (IKr) of all cells to 50%. An ischemic zone is located almost in the centre of the mid myocardium layer in the form of an elliptic inhomogeneity with varying percentage reduction of GJC compared to the surrounding. Results show that reduction of intercellular conductance in a midmyocardial island can cause a non-sustained reentrant arrhythmia to develop due to premature pacing beats. Addition of hyperkalaemic conditions in the ischemic zone has the effect of prolonging the arrhythmia.","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Regional Cellular Uncoupling in presence of LQTS2 in a 2D Cardiac Tissue\",\"authors\":\"P. Priya, M. Reddy\",\"doi\":\"10.1109/BIBE.2017.00-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ischemia in presence of drug induced long QT syndrome 2 (LQTS2) predisposes the tissue to Torsade de pointes (TdP). Reentrant arrhythmias occurring during phase 1B of ischemia have been primarily associated with areas of cellular uncoupling and hyperkalaemia. This study aims to investigate how a region of lowered gap junction conductance (GJC) in presence of LQTS2 can initiate a TdP. Here, a discrete grid of 250x100 cells interconnected using GJCs is taken representing a portion of the transmural wall with anisotropic conduction velocities. LQTS2 is introduced by reducing the potassium current (IKr) of all cells to 50%. An ischemic zone is located almost in the centre of the mid myocardium layer in the form of an elliptic inhomogeneity with varying percentage reduction of GJC compared to the surrounding. Results show that reduction of intercellular conductance in a midmyocardial island can cause a non-sustained reentrant arrhythmia to develop due to premature pacing beats. Addition of hyperkalaemic conditions in the ischemic zone has the effect of prolonging the arrhythmia.\",\"PeriodicalId\":262603,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2017.00-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.00-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

存在药物性长QT综合征2 (LQTS2)的缺血使组织易发生点扭转(TdP)。在缺血1B期发生的再入性心律失常主要与细胞解偶联和高钾血症有关。本研究旨在探讨LQTS2存在时缝隙结电导(GJC)降低的区域如何引发TdP。在这里,使用GJCs相互连接的250 × 100个细胞组成的离散网格代表了具有各向异性传导速度的跨壁壁的一部分。LQTS2通过将所有细胞的钾电流(IKr)降低到50%来引入。缺血区几乎位于中心肌层的中心,呈椭圆形不均匀,与周围相比,GJC减少的百分比不同。结果表明,心肌中岛细胞间电导的减少可导致非持续性再入性心律失常,这是由于过早起搏引起的。在缺血区增加高钾血症有延长心律失常的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Regional Cellular Uncoupling in presence of LQTS2 in a 2D Cardiac Tissue
Ischemia in presence of drug induced long QT syndrome 2 (LQTS2) predisposes the tissue to Torsade de pointes (TdP). Reentrant arrhythmias occurring during phase 1B of ischemia have been primarily associated with areas of cellular uncoupling and hyperkalaemia. This study aims to investigate how a region of lowered gap junction conductance (GJC) in presence of LQTS2 can initiate a TdP. Here, a discrete grid of 250x100 cells interconnected using GJCs is taken representing a portion of the transmural wall with anisotropic conduction velocities. LQTS2 is introduced by reducing the potassium current (IKr) of all cells to 50%. An ischemic zone is located almost in the centre of the mid myocardium layer in the form of an elliptic inhomogeneity with varying percentage reduction of GJC compared to the surrounding. Results show that reduction of intercellular conductance in a midmyocardial island can cause a non-sustained reentrant arrhythmia to develop due to premature pacing beats. Addition of hyperkalaemic conditions in the ischemic zone has the effect of prolonging the arrhythmia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信