可控普遍公平代表学习

Yue Cui, Ma Chen, Kai Zheng, Lei Chen, Xiaofang Zhou
{"title":"可控普遍公平代表学习","authors":"Yue Cui, Ma Chen, Kai Zheng, Lei Chen, Xiaofang Zhou","doi":"10.1145/3543507.3583307","DOIUrl":null,"url":null,"abstract":"Learning fair and transferable representations of users that can be used for a wide spectrum of downstream tasks (specifically, machine learning models) has great potential in fairness-aware Web services. Existing studies focus on debiasing w.r.t. a small scale of (one or a handful of) fixed pre-defined sensitive attributes. However, in real practice, downstream data users can be interested in various protected groups and these are usually not known as prior. This requires the learned representations to be fair w.r.t. all possible sensitive attributes. We name this task universal fair representation learning, in which an exponential number of sensitive attributes need to be dealt with, bringing the challenges of unreasonable computational cost and un-guaranteed fairness constraints. To address these problems, we propose a controllable universal fair representation learning (CUFRL) method. An effective bound is first derived via the lens of mutual information to guarantee parity of the universal set of sensitive attributes while maintaining the accuracy of downstream tasks. We also theoretically establish that the number of sensitive attributes that need to be processed can be reduced from exponential to linear. Experiments on two public real-world datasets demonstrate CUFRL can achieve significantly better accuracy-fairness trade-off compared with baseline approaches.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Controllable Universal Fair Representation Learning\",\"authors\":\"Yue Cui, Ma Chen, Kai Zheng, Lei Chen, Xiaofang Zhou\",\"doi\":\"10.1145/3543507.3583307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning fair and transferable representations of users that can be used for a wide spectrum of downstream tasks (specifically, machine learning models) has great potential in fairness-aware Web services. Existing studies focus on debiasing w.r.t. a small scale of (one or a handful of) fixed pre-defined sensitive attributes. However, in real practice, downstream data users can be interested in various protected groups and these are usually not known as prior. This requires the learned representations to be fair w.r.t. all possible sensitive attributes. We name this task universal fair representation learning, in which an exponential number of sensitive attributes need to be dealt with, bringing the challenges of unreasonable computational cost and un-guaranteed fairness constraints. To address these problems, we propose a controllable universal fair representation learning (CUFRL) method. An effective bound is first derived via the lens of mutual information to guarantee parity of the universal set of sensitive attributes while maintaining the accuracy of downstream tasks. We also theoretically establish that the number of sensitive attributes that need to be processed can be reduced from exponential to linear. Experiments on two public real-world datasets demonstrate CUFRL can achieve significantly better accuracy-fairness trade-off compared with baseline approaches.\",\"PeriodicalId\":296351,\"journal\":{\"name\":\"Proceedings of the ACM Web Conference 2023\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Web Conference 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543507.3583307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

学习公平和可转移的用户表示,可用于广泛的下游任务(特别是机器学习模型),在公平感知的Web服务中具有巨大的潜力。现有的研究主要集中在对一小部分(一个或几个)固定的预定义敏感属性进行降噪。然而,在实际实践中,下游数据用户可能对各种受保护组感兴趣,而这些组通常是未知的。这要求学习到的表示对于所有可能的敏感属性都是公平的。我们将此任务命名为通用公平表示学习,其中需要处理指数数量的敏感属性,带来不合理的计算成本和不保证的公平性约束的挑战。为了解决这些问题,我们提出了一种可控的通用公平表征学习(CUFRL)方法。首先通过互信息透镜推导出有效界,以保证敏感属性通用集的奇偶性,同时保持下游任务的准确性。我们还从理论上建立了需要处理的敏感属性的数量可以从指数减少到线性。在两个公开的真实数据集上的实验表明,与基线方法相比,CUFRL可以实现更好的准确性和公平性权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllable Universal Fair Representation Learning
Learning fair and transferable representations of users that can be used for a wide spectrum of downstream tasks (specifically, machine learning models) has great potential in fairness-aware Web services. Existing studies focus on debiasing w.r.t. a small scale of (one or a handful of) fixed pre-defined sensitive attributes. However, in real practice, downstream data users can be interested in various protected groups and these are usually not known as prior. This requires the learned representations to be fair w.r.t. all possible sensitive attributes. We name this task universal fair representation learning, in which an exponential number of sensitive attributes need to be dealt with, bringing the challenges of unreasonable computational cost and un-guaranteed fairness constraints. To address these problems, we propose a controllable universal fair representation learning (CUFRL) method. An effective bound is first derived via the lens of mutual information to guarantee parity of the universal set of sensitive attributes while maintaining the accuracy of downstream tasks. We also theoretically establish that the number of sensitive attributes that need to be processed can be reduced from exponential to linear. Experiments on two public real-world datasets demonstrate CUFRL can achieve significantly better accuracy-fairness trade-off compared with baseline approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信