更快的子树同构

R. Shamir, Dekel Tsur
{"title":"更快的子树同构","authors":"R. Shamir, Dekel Tsur","doi":"10.1109/ISTCS.1997.595164","DOIUrl":null,"url":null,"abstract":"We study the subtree isomorphism problem: Given trees H and G, find a subtree of G which is isomorphic to H or decide that there is no such subtree. We give an O(~k/sup 1.8//log k\\ n) time algorithm for this problem, where k and n are the number of vertices in H and G respectively. This improves over the O(k/sup 1.5/n) algorithms of Chung (1987) and Matula (1978). We also give a randomized (Las Vegas) O(min(k/sup 1.45/n, kn/sup 1.43/))-time algorithm for the decision problem.","PeriodicalId":367160,"journal":{"name":"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"146","resultStr":"{\"title\":\"Faster subtree isomorphism\",\"authors\":\"R. Shamir, Dekel Tsur\",\"doi\":\"10.1109/ISTCS.1997.595164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the subtree isomorphism problem: Given trees H and G, find a subtree of G which is isomorphic to H or decide that there is no such subtree. We give an O(~k/sup 1.8//log k\\\\ n) time algorithm for this problem, where k and n are the number of vertices in H and G respectively. This improves over the O(k/sup 1.5/n) algorithms of Chung (1987) and Matula (1978). We also give a randomized (Las Vegas) O(min(k/sup 1.45/n, kn/sup 1.43/))-time algorithm for the decision problem.\",\"PeriodicalId\":367160,\"journal\":{\"name\":\"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"146\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTCS.1997.595164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTCS.1997.595164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 146

摘要

我们研究了子树同构问题:给定树H和G,找出G的一个子树与H同构或判定不存在这样的子树。我们给出了一个O(~k/sup 1.8//log k\ n)时间算法,其中k和n分别是H和G中的顶点数。这比Chung(1987)和Matula(1978)的O(k/sup 1.5/n)算法有所改进。我们还给出了一个随机(拉斯维加斯)O(min(k/sup 1.45/n, kn/sup 1.43/))时间算法来解决决策问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faster subtree isomorphism
We study the subtree isomorphism problem: Given trees H and G, find a subtree of G which is isomorphic to H or decide that there is no such subtree. We give an O(~k/sup 1.8//log k\ n) time algorithm for this problem, where k and n are the number of vertices in H and G respectively. This improves over the O(k/sup 1.5/n) algorithms of Chung (1987) and Matula (1978). We also give a randomized (Las Vegas) O(min(k/sup 1.45/n, kn/sup 1.43/))-time algorithm for the decision problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信