用可穿戴式心电图传感器检测可卡因使用情况

A. Natarajan, Abhinav Parate, Edward Gaiser, G. Angarita, R. Malison, Benjamin M Marlin, Deepak Ganesan
{"title":"用可穿戴式心电图传感器检测可卡因使用情况","authors":"A. Natarajan, Abhinav Parate, Edward Gaiser, G. Angarita, R. Malison, Benjamin M Marlin, Deepak Ganesan","doi":"10.1145/2493432.2493496","DOIUrl":null,"url":null,"abstract":"Ubiquitous physiological sensing has the potential to profoundly improve our understanding of human behavior, leading to more targeted treatments for a variety of disorders. The long term goal of this work is development of novel computational tools to support the study of addiction in the context of cocaine use. The current paper takes the first step in this important direction by posing a simple, but crucial question: Can cocaine use be reliably detected using wearable electrocardiogram (ECG) sensors? The main contributions in this paper include the presentation of a novel clinical study of cocaine use, the development of a computational pipeline for inferring morphological features from noisy ECG waveforms, and the evaluation of feature sets for cocaine use detection. Our results show that 32mg/70kg doses of cocaine can be detected with the area under the receiver operating characteristic curve levels above 0.9 both within and between-subjects.","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Detecting cocaine use with wearable electrocardiogram sensors\",\"authors\":\"A. Natarajan, Abhinav Parate, Edward Gaiser, G. Angarita, R. Malison, Benjamin M Marlin, Deepak Ganesan\",\"doi\":\"10.1145/2493432.2493496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ubiquitous physiological sensing has the potential to profoundly improve our understanding of human behavior, leading to more targeted treatments for a variety of disorders. The long term goal of this work is development of novel computational tools to support the study of addiction in the context of cocaine use. The current paper takes the first step in this important direction by posing a simple, but crucial question: Can cocaine use be reliably detected using wearable electrocardiogram (ECG) sensors? The main contributions in this paper include the presentation of a novel clinical study of cocaine use, the development of a computational pipeline for inferring morphological features from noisy ECG waveforms, and the evaluation of feature sets for cocaine use detection. Our results show that 32mg/70kg doses of cocaine can be detected with the area under the receiver operating characteristic curve levels above 0.9 both within and between-subjects.\",\"PeriodicalId\":262104,\"journal\":{\"name\":\"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493432.2493496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493432.2493496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

无处不在的生理传感有可能深刻地提高我们对人类行为的理解,从而导致对各种疾病的更有针对性的治疗。这项工作的长期目标是开发新的计算工具,以支持可卡因使用背景下的成瘾研究。当前的论文通过提出一个简单但关键的问题,向这个重要的方向迈出了第一步:使用可穿戴式心电图(ECG)传感器能否可靠地检测可卡因的使用?本文的主要贡献包括提出了一项新的可卡因使用临床研究,开发了一种计算管道,用于从嘈杂的ECG波形中推断形态学特征,以及评估可卡因使用检测的特征集。我们的研究结果表明,32mg/70kg剂量的可卡因可以被检测出来,受试者内部和受试者之间的受试者工作特征曲线下面积水平高于0.9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting cocaine use with wearable electrocardiogram sensors
Ubiquitous physiological sensing has the potential to profoundly improve our understanding of human behavior, leading to more targeted treatments for a variety of disorders. The long term goal of this work is development of novel computational tools to support the study of addiction in the context of cocaine use. The current paper takes the first step in this important direction by posing a simple, but crucial question: Can cocaine use be reliably detected using wearable electrocardiogram (ECG) sensors? The main contributions in this paper include the presentation of a novel clinical study of cocaine use, the development of a computational pipeline for inferring morphological features from noisy ECG waveforms, and the evaluation of feature sets for cocaine use detection. Our results show that 32mg/70kg doses of cocaine can be detected with the area under the receiver operating characteristic curve levels above 0.9 both within and between-subjects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信