自适应匹配方向检测器

O. Besson, L. Scharf, S. Kraut
{"title":"自适应匹配方向检测器","authors":"O. Besson, L. Scharf, S. Kraut","doi":"10.1109/SAM.2006.1706108","DOIUrl":null,"url":null,"abstract":"We consider the problem of detecting a partially unknown signal, in the presence of unknown noise, using multiple snapshots in the primary data. To account for uncertainties about signal's signature, we assume that the steering vector lies on an unknown line in a known linear subspace. Additionally, we consider a partially homogeneous environment, for which the covariance matrix of the primary and the secondary data have the same structure, but possibly different levels. We study the invariances of the detection problem and derive the maximal invariant. A two-step generalized likelihood ratio test (GLRT) is formulated and compared with a 2-step GLRT which assumes that the steering vector is known","PeriodicalId":272327,"journal":{"name":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Matched Direction Detector\",\"authors\":\"O. Besson, L. Scharf, S. Kraut\",\"doi\":\"10.1109/SAM.2006.1706108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of detecting a partially unknown signal, in the presence of unknown noise, using multiple snapshots in the primary data. To account for uncertainties about signal's signature, we assume that the steering vector lies on an unknown line in a known linear subspace. Additionally, we consider a partially homogeneous environment, for which the covariance matrix of the primary and the secondary data have the same structure, but possibly different levels. We study the invariances of the detection problem and derive the maximal invariant. A two-step generalized likelihood ratio test (GLRT) is formulated and compared with a 2-step GLRT which assumes that the steering vector is known\",\"PeriodicalId\":272327,\"journal\":{\"name\":\"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2006.1706108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2006.1706108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在存在未知噪声的情况下,使用原始数据中的多个快照来检测部分未知信号的问题。为了考虑信号特征的不确定性,我们假设转向矢量位于已知线性子空间中的未知直线上。此外,我们考虑一个部分齐次的环境,其中主要数据和次要数据的协方差矩阵具有相同的结构,但可能不同的水平。我们研究了检测问题的不变量,并导出了最大不变量。建立了两步广义似然比检验(GLRT),并与假设转向向量已知的两步广义似然比检验(GLRT)进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Matched Direction Detector
We consider the problem of detecting a partially unknown signal, in the presence of unknown noise, using multiple snapshots in the primary data. To account for uncertainties about signal's signature, we assume that the steering vector lies on an unknown line in a known linear subspace. Additionally, we consider a partially homogeneous environment, for which the covariance matrix of the primary and the secondary data have the same structure, but possibly different levels. We study the invariances of the detection problem and derive the maximal invariant. A two-step generalized likelihood ratio test (GLRT) is formulated and compared with a 2-step GLRT which assumes that the steering vector is known
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信