XML中基于语言的异常检测的语法推理方法

Harald Lampesberger
{"title":"XML中基于语言的异常检测的语法推理方法","authors":"Harald Lampesberger","doi":"10.1109/ARES.2013.90","DOIUrl":null,"url":null,"abstract":"False-positives are a problem in anomaly-based intrusion detection systems. To counter this issue, we discuss anomaly detection for the extensible Markup Language (XML) in a language-theoretic view. We argue that many XML-based attacks target the syntactic level, i.e. the tree structure or element content, and syntax validation of XML documents reduces the attack surface. XML offers so-called schemas for validation, but in real world, schemas are often unavailable, ignored or too general. In this work-in-progress paper we describe a grammatical inference approach to learn an automaton from example XML documents for detecting documents with anomalous syntax. We discuss properties and expressiveness of XML to understand limits of learn ability. Our contributions are an XML Schema compatible lexical data type system to abstract content in XML and an algorithm to learn visibly pushdown automata (VPA) directly from a set of examples. The proposed algorithm does not require the tree representation of XML, so it can process large documents or streams. The resulting deterministic VPA then allows stream validation of documents to recognize deviations in the underlying tree structure or data types.","PeriodicalId":302747,"journal":{"name":"2013 International Conference on Availability, Reliability and Security","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Grammatical Inference Approach to Language-Based Anomaly Detection in XML\",\"authors\":\"Harald Lampesberger\",\"doi\":\"10.1109/ARES.2013.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"False-positives are a problem in anomaly-based intrusion detection systems. To counter this issue, we discuss anomaly detection for the extensible Markup Language (XML) in a language-theoretic view. We argue that many XML-based attacks target the syntactic level, i.e. the tree structure or element content, and syntax validation of XML documents reduces the attack surface. XML offers so-called schemas for validation, but in real world, schemas are often unavailable, ignored or too general. In this work-in-progress paper we describe a grammatical inference approach to learn an automaton from example XML documents for detecting documents with anomalous syntax. We discuss properties and expressiveness of XML to understand limits of learn ability. Our contributions are an XML Schema compatible lexical data type system to abstract content in XML and an algorithm to learn visibly pushdown automata (VPA) directly from a set of examples. The proposed algorithm does not require the tree representation of XML, so it can process large documents or streams. The resulting deterministic VPA then allows stream validation of documents to recognize deviations in the underlying tree structure or data types.\",\"PeriodicalId\":302747,\"journal\":{\"name\":\"2013 International Conference on Availability, Reliability and Security\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Availability, Reliability and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARES.2013.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2013.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在基于异常的入侵检测系统中,误报是一个问题。为了解决这个问题,我们从语言理论的角度讨论了可扩展标记语言(XML)的异常检测。我们认为,许多基于XML的攻击针对语法级别,即树结构或元素内容,而XML文档的语法验证减少了攻击面。XML为验证提供了所谓的模式,但在现实世界中,模式通常不可用、被忽略或过于一般化。在这篇正在进行的论文中,我们描述了一种语法推理方法,从示例XML文档中学习自动机,用于检测语法异常的文档。我们讨论了XML的属性和表达性,以了解学习能力的限制。我们的贡献是一个兼容XML Schema的词法数据类型系统,用于在XML中抽象内容,以及一个算法,用于直接从一组示例中学习可见的下推自动机(VPA)。所提出的算法不需要XML的树表示,因此它可以处理大型文档或流。然后,得到的确定性VPA允许对文档进行流验证,以识别底层树结构或数据类型中的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Grammatical Inference Approach to Language-Based Anomaly Detection in XML
False-positives are a problem in anomaly-based intrusion detection systems. To counter this issue, we discuss anomaly detection for the extensible Markup Language (XML) in a language-theoretic view. We argue that many XML-based attacks target the syntactic level, i.e. the tree structure or element content, and syntax validation of XML documents reduces the attack surface. XML offers so-called schemas for validation, but in real world, schemas are often unavailable, ignored or too general. In this work-in-progress paper we describe a grammatical inference approach to learn an automaton from example XML documents for detecting documents with anomalous syntax. We discuss properties and expressiveness of XML to understand limits of learn ability. Our contributions are an XML Schema compatible lexical data type system to abstract content in XML and an algorithm to learn visibly pushdown automata (VPA) directly from a set of examples. The proposed algorithm does not require the tree representation of XML, so it can process large documents or streams. The resulting deterministic VPA then allows stream validation of documents to recognize deviations in the underlying tree structure or data types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信