规范扩展的形式化及其在数论中的应用

María Inés de Frutos-Fernández
{"title":"规范扩展的形式化及其在数论中的应用","authors":"María Inés de Frutos-Fernández","doi":"10.48550/arXiv.2306.17234","DOIUrl":null,"url":null,"abstract":"Let $K$ be a field complete with respect to a nonarchimedean real-valued norm, and let $L/K$ be an algebraic extension. We show that there is a unique norm on $L$ extending the given norm on $K$, with an explicit description. As an application, we extend the $p$-adic norm on the field $\\mathbb{Q}_p$ of $p$-adic numbers to its algebraic closure $\\mathbb{Q}_p^{\\text{alg}}$, and we define the field $\\mathbb{C}_p$ of $p$-adic complex numbers as the completion of the latter with respect to the $p$-adic norm. Building on the definition of $\\mathbb{C}_p$, we formalize the definition of the Fontaine period ring $B_{\\text{HT}}$ and discuss some applications to the theory of Galois representations and to $p$-adic Hodge theory. The results formalized in this paper are a prerequisite to formalize Local Class Field Theory, which is a fundamental ingredient of the proof of Fermat's Last Theorem.","PeriodicalId":296683,"journal":{"name":"International Conference on Interactive Theorem Proving","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Formalizing Norm Extensions and Applications to Number Theory\",\"authors\":\"María Inés de Frutos-Fernández\",\"doi\":\"10.48550/arXiv.2306.17234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a field complete with respect to a nonarchimedean real-valued norm, and let $L/K$ be an algebraic extension. We show that there is a unique norm on $L$ extending the given norm on $K$, with an explicit description. As an application, we extend the $p$-adic norm on the field $\\\\mathbb{Q}_p$ of $p$-adic numbers to its algebraic closure $\\\\mathbb{Q}_p^{\\\\text{alg}}$, and we define the field $\\\\mathbb{C}_p$ of $p$-adic complex numbers as the completion of the latter with respect to the $p$-adic norm. Building on the definition of $\\\\mathbb{C}_p$, we formalize the definition of the Fontaine period ring $B_{\\\\text{HT}}$ and discuss some applications to the theory of Galois representations and to $p$-adic Hodge theory. The results formalized in this paper are a prerequisite to formalize Local Class Field Theory, which is a fundamental ingredient of the proof of Fermat's Last Theorem.\",\"PeriodicalId\":296683,\"journal\":{\"name\":\"International Conference on Interactive Theorem Proving\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Interactive Theorem Proving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.17234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Interactive Theorem Proving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.17234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$K$是一个关于非阿基米德实值范数的完备域,且设$L/K$是一个代数扩展。我们证明了$L$上存在一个唯一的范数,扩展了$K$上给定的范数,并给出了一个明确的描述。作为一个应用,我们将$p$-adic数的$\mathbb{Q}_p$域上的$p$-adic范数扩展到它的代数闭包$\mathbb{Q}_p^{\text{alg}}$,并定义$p$-adic复数的$\mathbb{C}_p$域作为后者相对于$p$-adic范数的补全。在$\mathbb{C}_p$定义的基础上,我们形式化了Fontaine周期环$B_{\text{HT}}$的定义,并讨论了它在伽罗瓦表示理论和$p$-adic Hodge理论中的一些应用。本文形式化的结果是形式化局部类场论的先决条件,而局部类场论是证明费马大定理的一个基本组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formalizing Norm Extensions and Applications to Number Theory
Let $K$ be a field complete with respect to a nonarchimedean real-valued norm, and let $L/K$ be an algebraic extension. We show that there is a unique norm on $L$ extending the given norm on $K$, with an explicit description. As an application, we extend the $p$-adic norm on the field $\mathbb{Q}_p$ of $p$-adic numbers to its algebraic closure $\mathbb{Q}_p^{\text{alg}}$, and we define the field $\mathbb{C}_p$ of $p$-adic complex numbers as the completion of the latter with respect to the $p$-adic norm. Building on the definition of $\mathbb{C}_p$, we formalize the definition of the Fontaine period ring $B_{\text{HT}}$ and discuss some applications to the theory of Galois representations and to $p$-adic Hodge theory. The results formalized in this paper are a prerequisite to formalize Local Class Field Theory, which is a fundamental ingredient of the proof of Fermat's Last Theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信