基于量子粒子群的i向量识别系统参数优化算法

Guangqi Liu, Wushour Silamu
{"title":"基于量子粒子群的i向量识别系统参数优化算法","authors":"Guangqi Liu, Wushour Silamu","doi":"10.1109/MLISE57402.2022.00065","DOIUrl":null,"url":null,"abstract":"For the noise robustness problem in i-vector: Based on the theoretical principle of i-vector speaker recognition system, the extraction principle and scoring calculation method of i-vector and the process of channel compensation algorithm based on PLDA (Probabilistic Linear Discriminant Analysis) with PLDA model are studied. The matching principle is studied. A statistical averaging i-vector extraction algorithm based on speech fragmentation is proposed to extract more robust i-vector features by weakening the statistical parameters of bad speech fragments to improve the recognition performance of the system. After that, the i-vector system is designed to improve the recognition performance of the i-vector.l Then, a Quantum Particle Swarm Optimization is designed to optimize the parameters of the i-vector recognition system to avoid the degradation of the system performance caused by artificial empirical values. Experimental analysis shows that the proposed algorithm has improved performance over the traditional i-vector recognition algorithm, especially in the case of noise interference, and has better recognition performance","PeriodicalId":350291,"journal":{"name":"2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter optimization algorithm for quantum particle swarm-based i-vector identification systems\",\"authors\":\"Guangqi Liu, Wushour Silamu\",\"doi\":\"10.1109/MLISE57402.2022.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the noise robustness problem in i-vector: Based on the theoretical principle of i-vector speaker recognition system, the extraction principle and scoring calculation method of i-vector and the process of channel compensation algorithm based on PLDA (Probabilistic Linear Discriminant Analysis) with PLDA model are studied. The matching principle is studied. A statistical averaging i-vector extraction algorithm based on speech fragmentation is proposed to extract more robust i-vector features by weakening the statistical parameters of bad speech fragments to improve the recognition performance of the system. After that, the i-vector system is designed to improve the recognition performance of the i-vector.l Then, a Quantum Particle Swarm Optimization is designed to optimize the parameters of the i-vector recognition system to avoid the degradation of the system performance caused by artificial empirical values. Experimental analysis shows that the proposed algorithm has improved performance over the traditional i-vector recognition algorithm, especially in the case of noise interference, and has better recognition performance\",\"PeriodicalId\":350291,\"journal\":{\"name\":\"2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLISE57402.2022.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLISE57402.2022.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对i-vector中的噪声鲁棒性问题:基于i-vector说话人识别系统的理论原理,研究了i-vector的提取原理和评分计算方法,以及基于PLDA模型的基于PLDA (Probabilistic Linear Discriminant Analysis)的信道补偿算法过程。研究了匹配原理。提出了一种基于语音片段的统计平均i向量提取算法,通过弱化不良语音片段的统计参数,提取更鲁棒的i向量特征,提高系统的识别性能。然后设计i向量系统,提高i向量的识别性能。l然后,设计量子粒子群算法对i向量识别系统的参数进行优化,避免人工经验值对系统性能的影响。实验分析表明,与传统的i向量识别算法相比,该算法的识别性能有所提高,特别是在噪声干扰的情况下,具有更好的识别性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter optimization algorithm for quantum particle swarm-based i-vector identification systems
For the noise robustness problem in i-vector: Based on the theoretical principle of i-vector speaker recognition system, the extraction principle and scoring calculation method of i-vector and the process of channel compensation algorithm based on PLDA (Probabilistic Linear Discriminant Analysis) with PLDA model are studied. The matching principle is studied. A statistical averaging i-vector extraction algorithm based on speech fragmentation is proposed to extract more robust i-vector features by weakening the statistical parameters of bad speech fragments to improve the recognition performance of the system. After that, the i-vector system is designed to improve the recognition performance of the i-vector.l Then, a Quantum Particle Swarm Optimization is designed to optimize the parameters of the i-vector recognition system to avoid the degradation of the system performance caused by artificial empirical values. Experimental analysis shows that the proposed algorithm has improved performance over the traditional i-vector recognition algorithm, especially in the case of noise interference, and has better recognition performance
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信