基于重加权零吸引混合范数LMS (RZA-MNLMS)的网格集成SPV系统控制

Shahzad Ali Rana, M. Jamil, Mumtaz Ahmad Khan, Mohammad Nair Aalam
{"title":"基于重加权零吸引混合范数LMS (RZA-MNLMS)的网格集成SPV系统控制","authors":"Shahzad Ali Rana, M. Jamil, Mumtaz Ahmad Khan, Mohammad Nair Aalam","doi":"10.1109/ICPC2T53885.2022.9776701","DOIUrl":null,"url":null,"abstract":"In this article, a Mixed Norm based LMS control algorithm updated with s reweigh ted zero attraction parameter is implemented for power conversion in a two-stage solar photovoltaic (SPV) system interconnected with the three-phase grid. The boost converter extracts peak power from the SPV array by application of the incremental conductance (INC)-based maximum power point tracking (MPPT) technique. The Reweighted Zero Attraction Mixed Norm LMS (RZA-MNLMS) algorithm estimates the weight component relating to the load, used to estimate the total active weight required for generating gating signals for voltage source converter (VSC). The VSC provides compensation for varying solar insolation and unbalanced non-linear load conditions at the point of common connection, resulting in load-balancing and harmonics compensation along with unity power factor operation. The performance of the suggested control is studied by developing a simulation model in MATLAB Simulink. The simulated model shows satisfactory performance under several abnormal conditions.","PeriodicalId":283298,"journal":{"name":"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reweighted Zero Attraction Mixed Norm LMS (RZA-MNLMS) based Control for Grid Integrated SPV System\",\"authors\":\"Shahzad Ali Rana, M. Jamil, Mumtaz Ahmad Khan, Mohammad Nair Aalam\",\"doi\":\"10.1109/ICPC2T53885.2022.9776701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a Mixed Norm based LMS control algorithm updated with s reweigh ted zero attraction parameter is implemented for power conversion in a two-stage solar photovoltaic (SPV) system interconnected with the three-phase grid. The boost converter extracts peak power from the SPV array by application of the incremental conductance (INC)-based maximum power point tracking (MPPT) technique. The Reweighted Zero Attraction Mixed Norm LMS (RZA-MNLMS) algorithm estimates the weight component relating to the load, used to estimate the total active weight required for generating gating signals for voltage source converter (VSC). The VSC provides compensation for varying solar insolation and unbalanced non-linear load conditions at the point of common connection, resulting in load-balancing and harmonics compensation along with unity power factor operation. The performance of the suggested control is studied by developing a simulation model in MATLAB Simulink. The simulated model shows satisfactory performance under several abnormal conditions.\",\"PeriodicalId\":283298,\"journal\":{\"name\":\"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPC2T53885.2022.9776701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPC2T53885.2022.9776701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于混合范数的LMS控制算法,该算法采用5个重加权零吸引参数,实现了与三相电网相连接的两级太阳能光伏发电系统的功率转换。升压变换器采用基于增量电导(INC)的最大功率点跟踪(MPPT)技术从SPV阵列中提取峰值功率。重新加权零吸引混合范数LMS (RZA-MNLMS)算法估计与负载相关的权重分量,用于估计电压源变换器(VSC)产生门控信号所需的总有效权重。VSC为不同的太阳日照和不平衡的非线性负载条件提供补偿,从而实现负载平衡和谐波补偿以及统一功率因数运行。在MATLAB Simulink中建立了仿真模型,研究了该控制方法的性能。仿真模型在多种异常情况下均显示出满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reweighted Zero Attraction Mixed Norm LMS (RZA-MNLMS) based Control for Grid Integrated SPV System
In this article, a Mixed Norm based LMS control algorithm updated with s reweigh ted zero attraction parameter is implemented for power conversion in a two-stage solar photovoltaic (SPV) system interconnected with the three-phase grid. The boost converter extracts peak power from the SPV array by application of the incremental conductance (INC)-based maximum power point tracking (MPPT) technique. The Reweighted Zero Attraction Mixed Norm LMS (RZA-MNLMS) algorithm estimates the weight component relating to the load, used to estimate the total active weight required for generating gating signals for voltage source converter (VSC). The VSC provides compensation for varying solar insolation and unbalanced non-linear load conditions at the point of common connection, resulting in load-balancing and harmonics compensation along with unity power factor operation. The performance of the suggested control is studied by developing a simulation model in MATLAB Simulink. The simulated model shows satisfactory performance under several abnormal conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信