利用机器学习对双能x射线吸收测量图像进行分类

N. Kirilov, E. Kirilova
{"title":"利用机器学习对双能x射线吸收测量图像进行分类","authors":"N. Kirilov, E. Kirilova","doi":"10.1109/ICEST52640.2021.9483559","DOIUrl":null,"url":null,"abstract":"In this paper we study the ability of machine learning or convolutional neural networks in particular to be trained to classify dual-energy x-ray absorptiometry images of the spine and hip. For this purpose we create models which could differentiate images with healthy bone from images with pathology.","PeriodicalId":308948,"journal":{"name":"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying Dual-Energy X-ray Absorptiometry Images Using Machine Learning\",\"authors\":\"N. Kirilov, E. Kirilova\",\"doi\":\"10.1109/ICEST52640.2021.9483559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the ability of machine learning or convolutional neural networks in particular to be trained to classify dual-energy x-ray absorptiometry images of the spine and hip. For this purpose we create models which could differentiate images with healthy bone from images with pathology.\",\"PeriodicalId\":308948,\"journal\":{\"name\":\"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEST52640.2021.9483559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEST52640.2021.9483559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了机器学习或卷积神经网络的能力,特别是训练来分类脊柱和髋关节的双能x射线吸收测量图像。为此,我们创建了能够区分健康骨骼图像和病理图像的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying Dual-Energy X-ray Absorptiometry Images Using Machine Learning
In this paper we study the ability of machine learning or convolutional neural networks in particular to be trained to classify dual-energy x-ray absorptiometry images of the spine and hip. For this purpose we create models which could differentiate images with healthy bone from images with pathology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信