超几何微分方程的Voros系数和Eynard-Orantin的拓扑递推:第二部分:超几何方程的合流族

Kohei Iwaki, T. Koike, Yumiko Takei
{"title":"超几何微分方程的Voros系数和Eynard-Orantin的拓扑递推:第二部分:超几何方程的合流族","authors":"Kohei Iwaki, T. Koike, Yumiko Takei","doi":"10.1093/INTEGR/XYZ004","DOIUrl":null,"url":null,"abstract":"\n We show that each member of the confluent family of the Gauss hypergeometric equations is realized as quantum curves for appropriate spectral curves. As an application, relations between the Voros coefficients of those equations and the free energy of their classical limit computed by the topological recursion are established. We will also find explicit expressions of the free energy and the Voros coefficients in terms of the Bernoulli numbers and Bernoulli polynomials.\n Communicated by: Youjin Zhang","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion: Part II: For confluent family of hypergeometric equations\",\"authors\":\"Kohei Iwaki, T. Koike, Yumiko Takei\",\"doi\":\"10.1093/INTEGR/XYZ004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We show that each member of the confluent family of the Gauss hypergeometric equations is realized as quantum curves for appropriate spectral curves. As an application, relations between the Voros coefficients of those equations and the free energy of their classical limit computed by the topological recursion are established. We will also find explicit expressions of the free energy and the Voros coefficients in terms of the Bernoulli numbers and Bernoulli polynomials.\\n Communicated by: Youjin Zhang\",\"PeriodicalId\":242196,\"journal\":{\"name\":\"Journal of Integrable Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/INTEGR/XYZ004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/INTEGR/XYZ004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

我们证明了高斯超几何方程合流族的每个成员都被实现为适当谱曲线的量子曲线。作为应用,建立了这些方程的Voros系数与用拓扑递推计算的经典极限自由能之间的关系。我们也会找到自由能和Voros系数的显式表达式用伯努利数和伯努利多项式表示。沟通人:张友进
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion: Part II: For confluent family of hypergeometric equations
We show that each member of the confluent family of the Gauss hypergeometric equations is realized as quantum curves for appropriate spectral curves. As an application, relations between the Voros coefficients of those equations and the free energy of their classical limit computed by the topological recursion are established. We will also find explicit expressions of the free energy and the Voros coefficients in terms of the Bernoulli numbers and Bernoulli polynomials. Communicated by: Youjin Zhang
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信