在高频横向不稳定时最小化瑞利积分的最佳多喷嘴配置

V. Acharya, T. Lieuwen
{"title":"在高频横向不稳定时最小化瑞利积分的最佳多喷嘴配置","authors":"V. Acharya, T. Lieuwen","doi":"10.1115/gt2021-60285","DOIUrl":null,"url":null,"abstract":"\n This paper develops a formalism for optimizing nozzle location/configuration with respect to combustion stability of high-frequency transverse modes in a can combustor. The stability of these acoustically non-compact flames was assessed using the Rayleigh Integral (RI). Several key control parameters influence RI – flame angle, swirling strength, nozzle location, as well as nozzle location with respect to the acoustic mode shape. In this study, we consider a N-around-1 configuration such as typically used in a multi-nozzle can system and study the overall stability of this system for different natural transverse modes. Typically, such nozzles are distributed in a uniformly circular manner for which we study the overall RI and for cases where RI > 0, we optimize the nozzle distribution that can reduce and minimize RI. For a fixed geometry such a circular configuration, the analysis shows how the flame’s parameters must vary across the different nozzles, to result in a relatively stable system. Additionally, for a fixed set of flame parameters, the analysis also indicates the non-circular distribution of the N nozzles that minimizes RI. Overall, the analysis aims to provide insights on designing nozzle locations around the center nozzle for minimal amplification of a given transverse mode.","PeriodicalId":395231,"journal":{"name":"Volume 3B: Combustion, Fuels, and Emissions","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimum Multi-Nozzle Configuration for Minimizing the Rayleigh Integral During High-Frequency Transverse Instabilities\",\"authors\":\"V. Acharya, T. Lieuwen\",\"doi\":\"10.1115/gt2021-60285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper develops a formalism for optimizing nozzle location/configuration with respect to combustion stability of high-frequency transverse modes in a can combustor. The stability of these acoustically non-compact flames was assessed using the Rayleigh Integral (RI). Several key control parameters influence RI – flame angle, swirling strength, nozzle location, as well as nozzle location with respect to the acoustic mode shape. In this study, we consider a N-around-1 configuration such as typically used in a multi-nozzle can system and study the overall stability of this system for different natural transverse modes. Typically, such nozzles are distributed in a uniformly circular manner for which we study the overall RI and for cases where RI > 0, we optimize the nozzle distribution that can reduce and minimize RI. For a fixed geometry such a circular configuration, the analysis shows how the flame’s parameters must vary across the different nozzles, to result in a relatively stable system. Additionally, for a fixed set of flame parameters, the analysis also indicates the non-circular distribution of the N nozzles that minimizes RI. Overall, the analysis aims to provide insights on designing nozzle locations around the center nozzle for minimal amplification of a given transverse mode.\",\"PeriodicalId\":395231,\"journal\":{\"name\":\"Volume 3B: Combustion, Fuels, and Emissions\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3B: Combustion, Fuels, and Emissions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-60285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3B: Combustion, Fuels, and Emissions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-60285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于燃烧室高频横模燃烧稳定性优化喷嘴位置/配置的公式。使用瑞利积分(RI)评估了这些声学非致密火焰的稳定性。几个关键的控制参数影响了RI -火焰角、旋流强度、喷嘴位置以及喷嘴位置相对于声模态形状的影响。在本研究中,我们考虑了多喷嘴系统中通常使用的N-around-1结构,并研究了该系统在不同自然横模下的整体稳定性。通常,这样的喷嘴以均匀的圆形方式分布,为此我们研究了整体RI,对于RI b>的情况,我们优化了可以减少和最小化RI的喷嘴分布。对于固定的几何形状,如圆形结构,分析表明火焰的参数如何在不同的喷嘴之间变化,以形成相对稳定的系统。此外,对于一组固定的火焰参数,分析还表明N喷嘴的非圆形分布使RI最小。总的来说,该分析旨在为设计喷嘴位置提供见解,以实现给定横向模式的最小放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimum Multi-Nozzle Configuration for Minimizing the Rayleigh Integral During High-Frequency Transverse Instabilities
This paper develops a formalism for optimizing nozzle location/configuration with respect to combustion stability of high-frequency transverse modes in a can combustor. The stability of these acoustically non-compact flames was assessed using the Rayleigh Integral (RI). Several key control parameters influence RI – flame angle, swirling strength, nozzle location, as well as nozzle location with respect to the acoustic mode shape. In this study, we consider a N-around-1 configuration such as typically used in a multi-nozzle can system and study the overall stability of this system for different natural transverse modes. Typically, such nozzles are distributed in a uniformly circular manner for which we study the overall RI and for cases where RI > 0, we optimize the nozzle distribution that can reduce and minimize RI. For a fixed geometry such a circular configuration, the analysis shows how the flame’s parameters must vary across the different nozzles, to result in a relatively stable system. Additionally, for a fixed set of flame parameters, the analysis also indicates the non-circular distribution of the N nozzles that minimizes RI. Overall, the analysis aims to provide insights on designing nozzle locations around the center nozzle for minimal amplification of a given transverse mode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信