利用加权_1球上的投影降低了在线稀疏信号重构的复杂度

Y. Kopsinis, K. Slavakis, S. Theodoridis, S. McLaughlin
{"title":"利用加权_1球上的投影降低了在线稀疏信号重构的复杂度","authors":"Y. Kopsinis, K. Slavakis, S. Theodoridis, S. McLaughlin","doi":"10.1109/ICDSP.2011.6005005","DOIUrl":null,"url":null,"abstract":"This paper presents a novel online method for sparse signal reconstruction. In particular, the notion of sub-dimensional projections is introduced, which allows a significant complexity reduction in the Adaptive Projection-based Algorithm using Weighted ℓ1 balls (APWL1). This is achieved without sacrificing performance. The proposed method is evaluated in both stationary and time-varying environments and its performance is compared with state-of-the-art online and batch LASSO-based methods.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Reduced complexity online sparse signal reconstruction using projections onto weighted ℓ1 balls\",\"authors\":\"Y. Kopsinis, K. Slavakis, S. Theodoridis, S. McLaughlin\",\"doi\":\"10.1109/ICDSP.2011.6005005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel online method for sparse signal reconstruction. In particular, the notion of sub-dimensional projections is introduced, which allows a significant complexity reduction in the Adaptive Projection-based Algorithm using Weighted ℓ1 balls (APWL1). This is achieved without sacrificing performance. The proposed method is evaluated in both stationary and time-varying environments and its performance is compared with state-of-the-art online and batch LASSO-based methods.\",\"PeriodicalId\":360702,\"journal\":{\"name\":\"2011 17th International Conference on Digital Signal Processing (DSP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 17th International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2011.6005005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6005005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种新的稀疏信号在线重构方法。特别是,引入了子维度投影的概念,它允许使用加权1球(APWL1)的基于自适应投影的算法显著降低复杂性。这是在不牺牲性能的情况下实现的。在静态和时变环境下对该方法进行了评估,并将其性能与最新的在线和批量lasso方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced complexity online sparse signal reconstruction using projections onto weighted ℓ1 balls
This paper presents a novel online method for sparse signal reconstruction. In particular, the notion of sub-dimensional projections is introduced, which allows a significant complexity reduction in the Adaptive Projection-based Algorithm using Weighted ℓ1 balls (APWL1). This is achieved without sacrificing performance. The proposed method is evaluated in both stationary and time-varying environments and its performance is compared with state-of-the-art online and batch LASSO-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信