视频检索采用自适应视频索引技术和自动关联反馈

P. Muneesawang, L. Guan
{"title":"视频检索采用自适应视频索引技术和自动关联反馈","authors":"P. Muneesawang, L. Guan","doi":"10.1109/MMSP.2002.1203286","DOIUrl":null,"url":null,"abstract":"This work demonstrates content-based retrieval techniques for video databases using an adaptive video indexing (AVI) and a neural network model. The AVI utilizes a \"template frequency model\" for embedding spatial-temporal contents which are a key in characterizing the time-varying nature of video. This model can naturally be adopted to characterize video at various levels from shot, group, and story levels, in order to facilitate a multiple-level access video database. The AVI retrieval system achieves excellent retrieval accuracy, substantially higher than that of the key-frame based video indexing (KFVI), a popular benchmark for video retrieval. Furthermore, AVI structure can be integrated to a specialized neural network model to perform automatic relevance feedback retrieval. This offers advantages both in minimizing human-user involvement, and in considerably enhancing retrieval accuracy in the context of adaptive systems.","PeriodicalId":398813,"journal":{"name":"2002 IEEE Workshop on Multimedia Signal Processing.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Video retrieval using an adaptive video indexing technique and automatic relevance feedback\",\"authors\":\"P. Muneesawang, L. Guan\",\"doi\":\"10.1109/MMSP.2002.1203286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates content-based retrieval techniques for video databases using an adaptive video indexing (AVI) and a neural network model. The AVI utilizes a \\\"template frequency model\\\" for embedding spatial-temporal contents which are a key in characterizing the time-varying nature of video. This model can naturally be adopted to characterize video at various levels from shot, group, and story levels, in order to facilitate a multiple-level access video database. The AVI retrieval system achieves excellent retrieval accuracy, substantially higher than that of the key-frame based video indexing (KFVI), a popular benchmark for video retrieval. Furthermore, AVI structure can be integrated to a specialized neural network model to perform automatic relevance feedback retrieval. This offers advantages both in minimizing human-user involvement, and in considerably enhancing retrieval accuracy in the context of adaptive systems.\",\"PeriodicalId\":398813,\"journal\":{\"name\":\"2002 IEEE Workshop on Multimedia Signal Processing.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE Workshop on Multimedia Signal Processing.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2002.1203286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE Workshop on Multimedia Signal Processing.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2002.1203286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

这项工作演示了基于内容的视频数据库检索技术,使用自适应视频索引(AVI)和神经网络模型。AVI利用“模板频率模型”来嵌入时空内容,这是表征视频时变特性的关键。该模型自然可以用于从镜头、组和故事三个层面对视频进行不同层次的表征,以方便多级访问视频数据库。AVI检索系统取得了优异的检索精度,大大高于基于关键帧的视频索引(KFVI),这是一种流行的视频检索基准。此外,AVI结构可以集成到一个专门的神经网络模型中进行自动关联反馈检索。这在最大限度地减少人类用户参与和大大提高自适应系统背景下的检索准确性方面提供了优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video retrieval using an adaptive video indexing technique and automatic relevance feedback
This work demonstrates content-based retrieval techniques for video databases using an adaptive video indexing (AVI) and a neural network model. The AVI utilizes a "template frequency model" for embedding spatial-temporal contents which are a key in characterizing the time-varying nature of video. This model can naturally be adopted to characterize video at various levels from shot, group, and story levels, in order to facilitate a multiple-level access video database. The AVI retrieval system achieves excellent retrieval accuracy, substantially higher than that of the key-frame based video indexing (KFVI), a popular benchmark for video retrieval. Furthermore, AVI structure can be integrated to a specialized neural network model to perform automatic relevance feedback retrieval. This offers advantages both in minimizing human-user involvement, and in considerably enhancing retrieval accuracy in the context of adaptive systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信