{"title":"汽车充电站混合微电网系统设计与分析","authors":"S. Deshmukh, V. Biradar, S. P. Gawande","doi":"10.1109/INCET57972.2023.10170085","DOIUrl":null,"url":null,"abstract":"DC and AC electricity charge EVs at the charging station. DC charges quickly, but AC charges slowly. The microgrid has few AC loads but lots of DC quick charging. High harmonic current from several AC and DC conversions will increase power usage and decrease microgrid solidity and richness. Hence, the traditional hybrid AC/DC microgrid that mainly relies on an AC microgrid fails in such conditions. Charging stations powered by a hybrid microgrid may help regulate power flow and reduce transmission losses in today's power grid. Nevertheless, when battery electric vehicles (BEVs) are charged without coordination with the hybrid microgrid, the associated renewable energy sources are not used to their full potential. In addition, a multiport charging facility is part of the growth of new charging stations that is expected to strain the power grid. Our unique hybrid microgrid system for electric car charging stations is proposed as a solution to these problems. To better accommodate electric vehicles (EVs) on the grid, this research proposes and evaluates a novel form of photovoltaics (PV) hybrid DC/AC microgrid for EV charging stations. Components of the proposed model include renewable energy sources, a diesel generator, a PV model, storage devices, linear loads, and non-linear loads (RESs). The effectiveness of the suggested model for electrical car charging stations is shown by the simulation results.","PeriodicalId":403008,"journal":{"name":"2023 4th International Conference for Emerging Technology (INCET)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Hybrid Microgrid System for Vehicle Electrical Charging Stations\",\"authors\":\"S. Deshmukh, V. Biradar, S. P. Gawande\",\"doi\":\"10.1109/INCET57972.2023.10170085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DC and AC electricity charge EVs at the charging station. DC charges quickly, but AC charges slowly. The microgrid has few AC loads but lots of DC quick charging. High harmonic current from several AC and DC conversions will increase power usage and decrease microgrid solidity and richness. Hence, the traditional hybrid AC/DC microgrid that mainly relies on an AC microgrid fails in such conditions. Charging stations powered by a hybrid microgrid may help regulate power flow and reduce transmission losses in today's power grid. Nevertheless, when battery electric vehicles (BEVs) are charged without coordination with the hybrid microgrid, the associated renewable energy sources are not used to their full potential. In addition, a multiport charging facility is part of the growth of new charging stations that is expected to strain the power grid. Our unique hybrid microgrid system for electric car charging stations is proposed as a solution to these problems. To better accommodate electric vehicles (EVs) on the grid, this research proposes and evaluates a novel form of photovoltaics (PV) hybrid DC/AC microgrid for EV charging stations. Components of the proposed model include renewable energy sources, a diesel generator, a PV model, storage devices, linear loads, and non-linear loads (RESs). The effectiveness of the suggested model for electrical car charging stations is shown by the simulation results.\",\"PeriodicalId\":403008,\"journal\":{\"name\":\"2023 4th International Conference for Emerging Technology (INCET)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference for Emerging Technology (INCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INCET57972.2023.10170085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCET57972.2023.10170085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Analysis of Hybrid Microgrid System for Vehicle Electrical Charging Stations
DC and AC electricity charge EVs at the charging station. DC charges quickly, but AC charges slowly. The microgrid has few AC loads but lots of DC quick charging. High harmonic current from several AC and DC conversions will increase power usage and decrease microgrid solidity and richness. Hence, the traditional hybrid AC/DC microgrid that mainly relies on an AC microgrid fails in such conditions. Charging stations powered by a hybrid microgrid may help regulate power flow and reduce transmission losses in today's power grid. Nevertheless, when battery electric vehicles (BEVs) are charged without coordination with the hybrid microgrid, the associated renewable energy sources are not used to their full potential. In addition, a multiport charging facility is part of the growth of new charging stations that is expected to strain the power grid. Our unique hybrid microgrid system for electric car charging stations is proposed as a solution to these problems. To better accommodate electric vehicles (EVs) on the grid, this research proposes and evaluates a novel form of photovoltaics (PV) hybrid DC/AC microgrid for EV charging stations. Components of the proposed model include renewable energy sources, a diesel generator, a PV model, storage devices, linear loads, and non-linear loads (RESs). The effectiveness of the suggested model for electrical car charging stations is shown by the simulation results.