特征选择的快速遗传算法-一种定性近似方法

Mohammed Ghaith Altarabichi, Sławomir Nowaczyk, Sepideh Pashami, P. Mashhadi
{"title":"特征选择的快速遗传算法-一种定性近似方法","authors":"Mohammed Ghaith Altarabichi, Sławomir Nowaczyk, Sepideh Pashami, P. Mashhadi","doi":"10.1145/3583133.3595823","DOIUrl":null,"url":null,"abstract":"We propose a two-stage surrogate-assisted evolutionary approach to address the computational issues arising from using Genetic Algorithm (GA) for feature selection in a wrapper setting for large datasets. The proposed approach involves constructing a lightweight qualitative meta-model by sub-sampling data instances and then using this meta-model to carry out the feature selection task. We define \"Approximation Usefulness\" to capture the necessary conditions that allow the meta-model to lead the evolutionary computations to the correct maximum of the fitness function. Based on our procedure we create CHCQX a Qualitative approXimations variant of the GA-based algorithm CHC (Cross generational elitist selection, Heterogeneous recombination and Cataclysmic mutation). We show that CHCQX converges faster to feature subset solutions of significantly higher accuracy, particularly for large datasets with over 100K instances. We also demonstrate the applicability of our approach to Swarm Intelligence (SI), with results of PSOQX, a qualitative approximation adaptation of the Particle Swarm Optimization (PSO) method. A GitHub repository with the complete implementation is available2. This paper for the Hot-off-the-Press track at GECCO 2023 summarizes the original work published at [3].","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fast Genetic Algorithm for feature selection — A qualitative approximation approach\",\"authors\":\"Mohammed Ghaith Altarabichi, Sławomir Nowaczyk, Sepideh Pashami, P. Mashhadi\",\"doi\":\"10.1145/3583133.3595823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a two-stage surrogate-assisted evolutionary approach to address the computational issues arising from using Genetic Algorithm (GA) for feature selection in a wrapper setting for large datasets. The proposed approach involves constructing a lightweight qualitative meta-model by sub-sampling data instances and then using this meta-model to carry out the feature selection task. We define \\\"Approximation Usefulness\\\" to capture the necessary conditions that allow the meta-model to lead the evolutionary computations to the correct maximum of the fitness function. Based on our procedure we create CHCQX a Qualitative approXimations variant of the GA-based algorithm CHC (Cross generational elitist selection, Heterogeneous recombination and Cataclysmic mutation). We show that CHCQX converges faster to feature subset solutions of significantly higher accuracy, particularly for large datasets with over 100K instances. We also demonstrate the applicability of our approach to Swarm Intelligence (SI), with results of PSOQX, a qualitative approximation adaptation of the Particle Swarm Optimization (PSO) method. A GitHub repository with the complete implementation is available2. This paper for the Hot-off-the-Press track at GECCO 2023 summarizes the original work published at [3].\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3595823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3595823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了一种两阶段代理辅助进化方法,以解决在大型数据集的包装设置中使用遗传算法(GA)进行特征选择所产生的计算问题。该方法通过对数据实例进行子采样,构建一个轻量级的定性元模型,然后利用该元模型进行特征选择。我们定义了“近似有用性”,以捕获允许元模型将进化计算引导到适应度函数的正确最大值的必要条件。基于我们的程序,我们创建了CHCQX,一种基于ga的算法CHC(跨代精英选择,异质重组和灾难性突变)的定性近似变体。我们表明,CHCQX更快地收敛到具有更高精度的特征子集解决方案,特别是对于具有超过100,000个实例的大型数据集。我们还证明了我们的方法对群体智能(SI)的适用性,并使用PSOQX的结果,PSOQX是粒子群优化(PSO)方法的定性近似适应。GitHub存储库提供了完整的实现。这篇论文将在GECCO 2023上发表,总结了[3]上发表的原始作品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Genetic Algorithm for feature selection — A qualitative approximation approach
We propose a two-stage surrogate-assisted evolutionary approach to address the computational issues arising from using Genetic Algorithm (GA) for feature selection in a wrapper setting for large datasets. The proposed approach involves constructing a lightweight qualitative meta-model by sub-sampling data instances and then using this meta-model to carry out the feature selection task. We define "Approximation Usefulness" to capture the necessary conditions that allow the meta-model to lead the evolutionary computations to the correct maximum of the fitness function. Based on our procedure we create CHCQX a Qualitative approXimations variant of the GA-based algorithm CHC (Cross generational elitist selection, Heterogeneous recombination and Cataclysmic mutation). We show that CHCQX converges faster to feature subset solutions of significantly higher accuracy, particularly for large datasets with over 100K instances. We also demonstrate the applicability of our approach to Swarm Intelligence (SI), with results of PSOQX, a qualitative approximation adaptation of the Particle Swarm Optimization (PSO) method. A GitHub repository with the complete implementation is available2. This paper for the Hot-off-the-Press track at GECCO 2023 summarizes the original work published at [3].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信