与斐波那契数相连的壳形曲线相关的星形函数的第三次汉克尔行列式的上界

Janusz Sokół, S. Ilhan, H. Özlem Güney
{"title":"与斐波那契数相连的壳形曲线相关的星形函数的第三次汉克尔行列式的上界","authors":"Janusz Sokół, S. Ilhan, H. Özlem Güney","doi":"10.7862/RF.2018.14","DOIUrl":null,"url":null,"abstract":"We investigate the third Hankel determinant problem for some starlike functions in the open unit disc, that are related to shelllike curves and connected with Fibonacci numbers. For this, firstly, we prove a conjecture, posed in [17], for sharp upper bound of second Hankel determinant. In the sequel, we obtain another sharp coefficient bound which we apply in solving the problem of the third Hankel determinant for these functions. AMS Subject Classification: 30C45, 30C50.","PeriodicalId":345762,"journal":{"name":"Journal of Mathematics and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An upper bound for third Hankel determinant of starlike functions related to shell-like curves connected with Fibonacci numbers\",\"authors\":\"Janusz Sokół, S. Ilhan, H. Özlem Güney\",\"doi\":\"10.7862/RF.2018.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the third Hankel determinant problem for some starlike functions in the open unit disc, that are related to shelllike curves and connected with Fibonacci numbers. For this, firstly, we prove a conjecture, posed in [17], for sharp upper bound of second Hankel determinant. In the sequel, we obtain another sharp coefficient bound which we apply in solving the problem of the third Hankel determinant for these functions. AMS Subject Classification: 30C45, 30C50.\",\"PeriodicalId\":345762,\"journal\":{\"name\":\"Journal of Mathematics and Applications\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7862/RF.2018.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7862/RF.2018.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了开单位圆盘上一些与壳形曲线有关并与斐波那契数有关的星形函数的第三次Hankel行列式问题。为此,我们首先证明了[17]中关于第二Hankel行列式的锐上界的一个猜想。在续文中,我们得到了另一个尖锐的系数界,并将其应用于求解这些函数的第三汉克尔行列式问题。学科分类:30C45、30C50。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An upper bound for third Hankel determinant of starlike functions related to shell-like curves connected with Fibonacci numbers
We investigate the third Hankel determinant problem for some starlike functions in the open unit disc, that are related to shelllike curves and connected with Fibonacci numbers. For this, firstly, we prove a conjecture, posed in [17], for sharp upper bound of second Hankel determinant. In the sequel, we obtain another sharp coefficient bound which we apply in solving the problem of the third Hankel determinant for these functions. AMS Subject Classification: 30C45, 30C50.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信