依赖风险的显式分散收益

M. Dacorogna, Laila Elbahtouri, M. Kratz
{"title":"依赖风险的显式分散收益","authors":"M. Dacorogna, Laila Elbahtouri, M. Kratz","doi":"10.2139/ssrn.2765403","DOIUrl":null,"url":null,"abstract":"We propose a new approach to analyse the effect of diversification on a portfolio of risks. By means of mixing techniques, we provide an explicit formula for the probability density function of the portfolio. These techniques allow to compute analytically risk measures as VaR or TVaR, and consequently the associated diversification benefit. The explicit formulas constitute ideal tools to analyse the properties of risk measures and diversification benefit. We use standard models, which are popular in the reinsurance industry, Archimedean survival copulas and heavy tailed marginals. We explore numerically their behavior and compare them to the aggregation of independent random variables, as well as of linearly dependent ones. Moreover, the numerical convergence of Monte Carlo simulations of various quantities is tested against the analytical result. The speed of convergence appears to depend on the fatness of the tail; the higher the tail index, the faster the convergence.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Explicit Diversification Beneift for Dependent Risks\",\"authors\":\"M. Dacorogna, Laila Elbahtouri, M. Kratz\",\"doi\":\"10.2139/ssrn.2765403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new approach to analyse the effect of diversification on a portfolio of risks. By means of mixing techniques, we provide an explicit formula for the probability density function of the portfolio. These techniques allow to compute analytically risk measures as VaR or TVaR, and consequently the associated diversification benefit. The explicit formulas constitute ideal tools to analyse the properties of risk measures and diversification benefit. We use standard models, which are popular in the reinsurance industry, Archimedean survival copulas and heavy tailed marginals. We explore numerically their behavior and compare them to the aggregation of independent random variables, as well as of linearly dependent ones. Moreover, the numerical convergence of Monte Carlo simulations of various quantities is tested against the analytical result. The speed of convergence appears to depend on the fatness of the tail; the higher the tail index, the faster the convergence.\",\"PeriodicalId\":203996,\"journal\":{\"name\":\"ERN: Value-at-Risk (Topic)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Value-at-Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2765403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2765403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的方法来分析多元化对风险组合的影响。利用混合技术,给出了投资组合的概率密度函数的显式公式。这些技术允许分析性地计算风险度量,如VaR或TVaR,从而获得相关的多样化收益。这些显式公式是分析风险度量和分散收益特性的理想工具。我们使用在再保险行业流行的标准模型、阿基米德生存copulas和重尾边际。我们在数值上探索它们的行为,并将它们与独立随机变量的集合以及线性相关变量的集合进行比较。此外,根据分析结果验证了不同数量蒙特卡罗模拟的数值收敛性。收敛的速度似乎取决于尾巴的粗壮程度;尾指数越高,收敛速度越快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit Diversification Beneift for Dependent Risks
We propose a new approach to analyse the effect of diversification on a portfolio of risks. By means of mixing techniques, we provide an explicit formula for the probability density function of the portfolio. These techniques allow to compute analytically risk measures as VaR or TVaR, and consequently the associated diversification benefit. The explicit formulas constitute ideal tools to analyse the properties of risk measures and diversification benefit. We use standard models, which are popular in the reinsurance industry, Archimedean survival copulas and heavy tailed marginals. We explore numerically their behavior and compare them to the aggregation of independent random variables, as well as of linearly dependent ones. Moreover, the numerical convergence of Monte Carlo simulations of various quantities is tested against the analytical result. The speed of convergence appears to depend on the fatness of the tail; the higher the tail index, the faster the convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信