{"title":"地理低地轨道网络无基础设施移动带来的 QoS 瓶颈","authors":"Lixin Liu, Hewu Li, Yuanjie Li, Zeqi Lai, Yangtao Deng, Yimei Chen, Wei Li, Qian Wu","doi":"10.1109/IWQoS54832.2022.9812903","DOIUrl":null,"url":null,"abstract":"Low-earth-orbit (LEO) satellite mega-constellations promise broadband, low-latency network infrastructure from space for terrestrial users in remote areas. However, they face new QoS bottlenecks from infrastructure mobility due to the fast-moving LEO satellites and earth’s rotations. Both cause frequent space-ground link churns and challenge the network latency, bandwidth, and availability at the global scale. Today’s LEO networks mask infrastructure mobility with fixed anchors (ground stations) but cause single-point bandwidth/latency bottlenecks. Instead, we design LBP to remove the LEO network’s QoS bottlenecks from infrastructure mobility. LBP removes remote terrestrial fixed anchors via geographic addressing for shorter latencies and more bandwidth. It adopts local, orbit direction-aware geographic routing to avoid global routing updates for high network availability. LBP further shortens the routing paths by refining handover policies by satellites’ orbital directions. Our experiments in controlled testbeds and trace-driven emulations validate LBP’s 1.64× network latency reduction, 9.66× more bandwidth, and improve network availability to 100%.","PeriodicalId":353365,"journal":{"name":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","volume":"os-34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geographic Low-Earth-Orbit Networking without QoS Bottlenecks from Infrastructure Mobility\",\"authors\":\"Lixin Liu, Hewu Li, Yuanjie Li, Zeqi Lai, Yangtao Deng, Yimei Chen, Wei Li, Qian Wu\",\"doi\":\"10.1109/IWQoS54832.2022.9812903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-earth-orbit (LEO) satellite mega-constellations promise broadband, low-latency network infrastructure from space for terrestrial users in remote areas. However, they face new QoS bottlenecks from infrastructure mobility due to the fast-moving LEO satellites and earth’s rotations. Both cause frequent space-ground link churns and challenge the network latency, bandwidth, and availability at the global scale. Today’s LEO networks mask infrastructure mobility with fixed anchors (ground stations) but cause single-point bandwidth/latency bottlenecks. Instead, we design LBP to remove the LEO network’s QoS bottlenecks from infrastructure mobility. LBP removes remote terrestrial fixed anchors via geographic addressing for shorter latencies and more bandwidth. It adopts local, orbit direction-aware geographic routing to avoid global routing updates for high network availability. LBP further shortens the routing paths by refining handover policies by satellites’ orbital directions. Our experiments in controlled testbeds and trace-driven emulations validate LBP’s 1.64× network latency reduction, 9.66× more bandwidth, and improve network availability to 100%.\",\"PeriodicalId\":353365,\"journal\":{\"name\":\"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)\",\"volume\":\"os-34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQoS54832.2022.9812903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS54832.2022.9812903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geographic Low-Earth-Orbit Networking without QoS Bottlenecks from Infrastructure Mobility
Low-earth-orbit (LEO) satellite mega-constellations promise broadband, low-latency network infrastructure from space for terrestrial users in remote areas. However, they face new QoS bottlenecks from infrastructure mobility due to the fast-moving LEO satellites and earth’s rotations. Both cause frequent space-ground link churns and challenge the network latency, bandwidth, and availability at the global scale. Today’s LEO networks mask infrastructure mobility with fixed anchors (ground stations) but cause single-point bandwidth/latency bottlenecks. Instead, we design LBP to remove the LEO network’s QoS bottlenecks from infrastructure mobility. LBP removes remote terrestrial fixed anchors via geographic addressing for shorter latencies and more bandwidth. It adopts local, orbit direction-aware geographic routing to avoid global routing updates for high network availability. LBP further shortens the routing paths by refining handover policies by satellites’ orbital directions. Our experiments in controlled testbeds and trace-driven emulations validate LBP’s 1.64× network latency reduction, 9.66× more bandwidth, and improve network availability to 100%.