基于视觉的无人机陀螺仪故障检测

B. Simlinger, G. Ducard
{"title":"基于视觉的无人机陀螺仪故障检测","authors":"B. Simlinger, G. Ducard","doi":"10.1109/SAS.2019.8705965","DOIUrl":null,"url":null,"abstract":"This paper presents a vision-based fault detection and isolation architecture for unmanned aerial vehicles. The vehicle’s attitude is computed from visual input through a horizon tracking algorithm, independently of any other sensor. In a second stage, two Kalman filters are used for fault detection and identification in two gyroscopes. The loosely coupled architecture is suitable for real-time application. The algorithm was implemented with the ROS framework and the system’s performance is evaluated in a real-time application scenario with artificially introduced sensor faults.","PeriodicalId":360234,"journal":{"name":"2019 IEEE Sensors Applications Symposium (SAS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Vision-based Gyroscope Fault Detection for UAVs\",\"authors\":\"B. Simlinger, G. Ducard\",\"doi\":\"10.1109/SAS.2019.8705965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a vision-based fault detection and isolation architecture for unmanned aerial vehicles. The vehicle’s attitude is computed from visual input through a horizon tracking algorithm, independently of any other sensor. In a second stage, two Kalman filters are used for fault detection and identification in two gyroscopes. The loosely coupled architecture is suitable for real-time application. The algorithm was implemented with the ROS framework and the system’s performance is evaluated in a real-time application scenario with artificially introduced sensor faults.\",\"PeriodicalId\":360234,\"journal\":{\"name\":\"2019 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2019.8705965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2019.8705965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于视觉的无人机故障检测与隔离体系结构。车辆的姿态是通过地平线跟踪算法从视觉输入计算出来的,独立于任何其他传感器。在第二阶段,使用两个卡尔曼滤波器对两个陀螺仪进行故障检测和识别。松耦合体系结构适合于实时应用。该算法在ROS框架下实现,并在人工引入传感器故障的实时应用场景下对系统性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision-based Gyroscope Fault Detection for UAVs
This paper presents a vision-based fault detection and isolation architecture for unmanned aerial vehicles. The vehicle’s attitude is computed from visual input through a horizon tracking algorithm, independently of any other sensor. In a second stage, two Kalman filters are used for fault detection and identification in two gyroscopes. The loosely coupled architecture is suitable for real-time application. The algorithm was implemented with the ROS framework and the system’s performance is evaluated in a real-time application scenario with artificially introduced sensor faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信