基于局部搜索的推荐系统中相似矩阵的计算

Y. Kilani, A. Alsarhan, Mohammad Bsoul, Subhieh M. El-Salhi
{"title":"基于局部搜索的推荐系统中相似矩阵的计算","authors":"Y. Kilani, A. Alsarhan, Mohammad Bsoul, Subhieh M. El-Salhi","doi":"10.1504/IJISTA.2019.10019366","DOIUrl":null,"url":null,"abstract":"Recommender systems reduce the users' effort in finding their favourite items among a great number of items. In collaborative-based RSs, there are different similarity measures like: genetic algorithms, Pearson and cosine-based similarity techniques. The number of items and personal attributes (e.g., environment, sex, job, religion, age, county, education, etc.) that are used by the similarity metric algorithms are increasing significantly which makes the recommendation task more difficult. In our project, we introduce a new RS that uses the local search algorithms to compute the similarity matrix. As far as we know, we have not found any work in the RS literature that uses local search algorithms techniques. We show that our new RS computes the similarity matrix and outperforms the other techniques like the Pearson correlation and cosine similarity and some of the recent genetic-based recommender systems.","PeriodicalId":420808,"journal":{"name":"Int. J. Intell. Syst. Technol. Appl.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Local search-based recommender system for computing the similarity matrix\",\"authors\":\"Y. Kilani, A. Alsarhan, Mohammad Bsoul, Subhieh M. El-Salhi\",\"doi\":\"10.1504/IJISTA.2019.10019366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems reduce the users' effort in finding their favourite items among a great number of items. In collaborative-based RSs, there are different similarity measures like: genetic algorithms, Pearson and cosine-based similarity techniques. The number of items and personal attributes (e.g., environment, sex, job, religion, age, county, education, etc.) that are used by the similarity metric algorithms are increasing significantly which makes the recommendation task more difficult. In our project, we introduce a new RS that uses the local search algorithms to compute the similarity matrix. As far as we know, we have not found any work in the RS literature that uses local search algorithms techniques. We show that our new RS computes the similarity matrix and outperforms the other techniques like the Pearson correlation and cosine similarity and some of the recent genetic-based recommender systems.\",\"PeriodicalId\":420808,\"journal\":{\"name\":\"Int. J. Intell. Syst. Technol. Appl.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Syst. Technol. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJISTA.2019.10019366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Syst. Technol. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJISTA.2019.10019366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

推荐系统减少了用户在大量物品中找到自己喜欢的物品的工作量。在基于协作的RSs中,有不同的相似性度量,如:遗传算法、Pearson和基于余弦的相似性技术。相似度度量算法所使用的物品和个人属性(如环境、性别、工作、宗教、年龄、县、教育程度等)的数量正在显著增加,这使得推荐任务更加困难。在我们的项目中,我们引入了一种新的RS,它使用局部搜索算法来计算相似矩阵。据我们所知,我们还没有在RS文献中发现任何使用本地搜索算法技术的工作。我们表明,我们的新RS计算相似矩阵,并优于其他技术,如Pearson相关和余弦相似度以及一些最近的基于遗传的推荐系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local search-based recommender system for computing the similarity matrix
Recommender systems reduce the users' effort in finding their favourite items among a great number of items. In collaborative-based RSs, there are different similarity measures like: genetic algorithms, Pearson and cosine-based similarity techniques. The number of items and personal attributes (e.g., environment, sex, job, religion, age, county, education, etc.) that are used by the similarity metric algorithms are increasing significantly which makes the recommendation task more difficult. In our project, we introduce a new RS that uses the local search algorithms to compute the similarity matrix. As far as we know, we have not found any work in the RS literature that uses local search algorithms techniques. We show that our new RS computes the similarity matrix and outperforms the other techniques like the Pearson correlation and cosine similarity and some of the recent genetic-based recommender systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信