{"title":"序列数据的子空间聚类","authors":"Stephen Tierney, Junbin Gao, Yi Guo","doi":"10.1109/CVPR.2014.134","DOIUrl":null,"url":null,"abstract":"We propose Ordered Subspace Clustering (OSC) to segment data drawn from a sequentially ordered union of subspaces. Current subspace clustering techniques learn the relationships within a set of data and then use a separate clustering algorithm such as NCut for final segmentation. In contrast our technique, under certain conditions, is capable of segmenting clusters intrinsically without providing the number of clusters as a parameter. Similar to Sparse Subspace Clustering (SSC) we formulate the problem as one of finding a sparse representation but include a new penalty term to take care of sequential data. We test our method on data drawn from infrared hyper spectral data, video sequences and face images. Our experiments show that our method, OSC, outperforms the state of the art methods: Spatial Subspace Clustering (SpatSC), Low-Rank Representation (LRR) and SSC.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":"{\"title\":\"Subspace Clustering for Sequential Data\",\"authors\":\"Stephen Tierney, Junbin Gao, Yi Guo\",\"doi\":\"10.1109/CVPR.2014.134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose Ordered Subspace Clustering (OSC) to segment data drawn from a sequentially ordered union of subspaces. Current subspace clustering techniques learn the relationships within a set of data and then use a separate clustering algorithm such as NCut for final segmentation. In contrast our technique, under certain conditions, is capable of segmenting clusters intrinsically without providing the number of clusters as a parameter. Similar to Sparse Subspace Clustering (SSC) we formulate the problem as one of finding a sparse representation but include a new penalty term to take care of sequential data. We test our method on data drawn from infrared hyper spectral data, video sequences and face images. Our experiments show that our method, OSC, outperforms the state of the art methods: Spatial Subspace Clustering (SpatSC), Low-Rank Representation (LRR) and SSC.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"102\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose Ordered Subspace Clustering (OSC) to segment data drawn from a sequentially ordered union of subspaces. Current subspace clustering techniques learn the relationships within a set of data and then use a separate clustering algorithm such as NCut for final segmentation. In contrast our technique, under certain conditions, is capable of segmenting clusters intrinsically without providing the number of clusters as a parameter. Similar to Sparse Subspace Clustering (SSC) we formulate the problem as one of finding a sparse representation but include a new penalty term to take care of sequential data. We test our method on data drawn from infrared hyper spectral data, video sequences and face images. Our experiments show that our method, OSC, outperforms the state of the art methods: Spatial Subspace Clustering (SpatSC), Low-Rank Representation (LRR) and SSC.