在专栏商店里进行时间旅行

Martin Kaufmann, Amin Amiri Manjili, Stefan Hildenbrand, Donald Kossmann, Andreas Tonder
{"title":"在专栏商店里进行时间旅行","authors":"Martin Kaufmann, Amin Amiri Manjili, Stefan Hildenbrand, Donald Kossmann, Andreas Tonder","doi":"10.1109/ICDE.2013.6544818","DOIUrl":null,"url":null,"abstract":"Recent studies have shown that column stores can outperform row stores significantly. This paper explores alternative approaches to extend column stores with versioning, i.e., time travel queries and the maintenance of historic data. On the one hand, adding versioning can actually simplify the design of a column store because it provides a solution for the implementation of updates, traditionally a weak point in the design of column stores. On the other hand, implementing a versioned column store is challenging because it imposes a two dimensional clustering problem: should the data be clustered by row or by version? This paper devises the details of three memory layouts: clustering by row, clustering by version, and hybrid clustering. Performance experiments demonstrate that all three approaches outperform a (traditional) versioned row store. The efficiency of these three memory layouts depends on the query and update workload. Furthermore, the performance experiments analyze the time-space tradeoff that can be made in the implementation of versioned column stores.","PeriodicalId":399979,"journal":{"name":"2013 IEEE 29th International Conference on Data Engineering (ICDE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Time travel in column stores\",\"authors\":\"Martin Kaufmann, Amin Amiri Manjili, Stefan Hildenbrand, Donald Kossmann, Andreas Tonder\",\"doi\":\"10.1109/ICDE.2013.6544818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have shown that column stores can outperform row stores significantly. This paper explores alternative approaches to extend column stores with versioning, i.e., time travel queries and the maintenance of historic data. On the one hand, adding versioning can actually simplify the design of a column store because it provides a solution for the implementation of updates, traditionally a weak point in the design of column stores. On the other hand, implementing a versioned column store is challenging because it imposes a two dimensional clustering problem: should the data be clustered by row or by version? This paper devises the details of three memory layouts: clustering by row, clustering by version, and hybrid clustering. Performance experiments demonstrate that all three approaches outperform a (traditional) versioned row store. The efficiency of these three memory layouts depends on the query and update workload. Furthermore, the performance experiments analyze the time-space tradeoff that can be made in the implementation of versioned column stores.\",\"PeriodicalId\":399979,\"journal\":{\"name\":\"2013 IEEE 29th International Conference on Data Engineering (ICDE)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 29th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2013.6544818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 29th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2013.6544818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近的研究表明,列存储的性能明显优于行存储。本文探讨了用版本控制扩展列存储的替代方法,即时间旅行查询和历史数据的维护。一方面,添加版本控制实际上可以简化列存储的设计,因为它为更新的实现提供了解决方案,而更新是列存储设计中的传统弱点。另一方面,实现版本化的列存储很有挑战性,因为它带来了一个二维集群问题:数据应该按行还是按版本集群?本文设计了三种内存布局的细节:按行聚类、按版本聚类和混合聚类。性能实验表明,这三种方法的性能都优于(传统的)版本行存储。这三种内存布局的效率取决于查询和更新工作负载。此外,性能实验分析了在实现版本列存储时可能进行的时间-空间权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time travel in column stores
Recent studies have shown that column stores can outperform row stores significantly. This paper explores alternative approaches to extend column stores with versioning, i.e., time travel queries and the maintenance of historic data. On the one hand, adding versioning can actually simplify the design of a column store because it provides a solution for the implementation of updates, traditionally a weak point in the design of column stores. On the other hand, implementing a versioned column store is challenging because it imposes a two dimensional clustering problem: should the data be clustered by row or by version? This paper devises the details of three memory layouts: clustering by row, clustering by version, and hybrid clustering. Performance experiments demonstrate that all three approaches outperform a (traditional) versioned row store. The efficiency of these three memory layouts depends on the query and update workload. Furthermore, the performance experiments analyze the time-space tradeoff that can be made in the implementation of versioned column stores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信