具有轨对轨输出的低功率高增益逆变叠加放大器

Erwin H. T. Shad, Tania Moeinfard, M. Molinas, T. Ytterdal
{"title":"具有轨对轨输出的低功率高增益逆变叠加放大器","authors":"Erwin H. T. Shad, Tania Moeinfard, M. Molinas, T. Ytterdal","doi":"10.1109/DTS52014.2021.9497971","DOIUrl":null,"url":null,"abstract":"In this article, a rail-to-rail low-power amplifier is presented based on stacking inverter-based amplifiers. The output voltages of each inverter-based amplifier are converted to a current and then mirrored to the output so that a rail-to-rail output is achieved. Besides, extensive simulations have been carried out to show the effect of drain-source voltage on the intrinsic gain of a transistor. Based on these simulations, a minimum supply voltage is chosen to achieve high open-loop gain and low closed-loop gain error. All the simulations are carried out in a commercially available 0.18 µm CMOS technology. The proposed amplifier achieves 88 dB open-loop gain. It is exploited in a capacitively-coupled amplifier structure. The closed-loop gain is 40 dB in the bandwidth of 0.1 Hz to 10 kHz when the power consumption is 0.54 µW at a 1.2 V supply voltage. The total input-referred noise is 4.7 µVrms in the whole bandwidth. The proposed neural amplifier achieved 0.02 SEF in the bandwidth from 200 Hz to 10 kHz. The proposed amplifier achieved a rail-to-rail output swing while the SEF is among the best reported SEF in the literature. Besides, to show the robustness of the proposed structure in the presence of process and mismatch variation, 500 Monte Carlo simulations are carried out. The PSRR and CMRR mean values are 89 dB and 68 dB, respectively. Finally, the proposed neural amplifier area consumption is 0.03 mm2 without pads.","PeriodicalId":158426,"journal":{"name":"2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-power High-gain Inverter Stacking Amplifier with Rail-to-Rail Output\",\"authors\":\"Erwin H. T. Shad, Tania Moeinfard, M. Molinas, T. Ytterdal\",\"doi\":\"10.1109/DTS52014.2021.9497971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a rail-to-rail low-power amplifier is presented based on stacking inverter-based amplifiers. The output voltages of each inverter-based amplifier are converted to a current and then mirrored to the output so that a rail-to-rail output is achieved. Besides, extensive simulations have been carried out to show the effect of drain-source voltage on the intrinsic gain of a transistor. Based on these simulations, a minimum supply voltage is chosen to achieve high open-loop gain and low closed-loop gain error. All the simulations are carried out in a commercially available 0.18 µm CMOS technology. The proposed amplifier achieves 88 dB open-loop gain. It is exploited in a capacitively-coupled amplifier structure. The closed-loop gain is 40 dB in the bandwidth of 0.1 Hz to 10 kHz when the power consumption is 0.54 µW at a 1.2 V supply voltage. The total input-referred noise is 4.7 µVrms in the whole bandwidth. The proposed neural amplifier achieved 0.02 SEF in the bandwidth from 200 Hz to 10 kHz. The proposed amplifier achieved a rail-to-rail output swing while the SEF is among the best reported SEF in the literature. Besides, to show the robustness of the proposed structure in the presence of process and mismatch variation, 500 Monte Carlo simulations are carried out. The PSRR and CMRR mean values are 89 dB and 68 dB, respectively. Finally, the proposed neural amplifier area consumption is 0.03 mm2 without pads.\",\"PeriodicalId\":158426,\"journal\":{\"name\":\"2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DTS52014.2021.9497971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTS52014.2021.9497971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于叠加逆变器放大器的轨对轨低功率放大器。每个基于逆变器的放大器的输出电压被转换成电流,然后镜像到输出,从而实现轨对轨输出。此外,还进行了大量的仿真,以显示漏源电压对晶体管本征增益的影响。在此基础上,选择一个最小的电源电压来实现高开环增益和低闭环增益误差。所有的模拟都是在商用的0.18µm CMOS技术上进行的。该放大器的开环增益为88 dB。它被利用在电容耦合放大器结构中。当功耗为0.54 μ W,电源电压为1.2 V时,在0.1 Hz ~ 10 kHz的带宽范围内,闭环增益为40 dB。在整个带宽中,总输入参考噪声为4.7µVrms。所提出的神经放大器在200 Hz到10 kHz的带宽范围内达到0.02 SEF。提出的放大器实现了轨到轨输出摆幅,而SEF是文献中报道的最好的SEF之一。此外,为了证明所提出的结构在存在过程和失配变化时的鲁棒性,进行了500次蒙特卡罗模拟。PSRR均值为89 dB, CMRR均值为68 dB。最后,提出的神经放大器面积消耗为0.03 mm2无衬垫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Low-power High-gain Inverter Stacking Amplifier with Rail-to-Rail Output
In this article, a rail-to-rail low-power amplifier is presented based on stacking inverter-based amplifiers. The output voltages of each inverter-based amplifier are converted to a current and then mirrored to the output so that a rail-to-rail output is achieved. Besides, extensive simulations have been carried out to show the effect of drain-source voltage on the intrinsic gain of a transistor. Based on these simulations, a minimum supply voltage is chosen to achieve high open-loop gain and low closed-loop gain error. All the simulations are carried out in a commercially available 0.18 µm CMOS technology. The proposed amplifier achieves 88 dB open-loop gain. It is exploited in a capacitively-coupled amplifier structure. The closed-loop gain is 40 dB in the bandwidth of 0.1 Hz to 10 kHz when the power consumption is 0.54 µW at a 1.2 V supply voltage. The total input-referred noise is 4.7 µVrms in the whole bandwidth. The proposed neural amplifier achieved 0.02 SEF in the bandwidth from 200 Hz to 10 kHz. The proposed amplifier achieved a rail-to-rail output swing while the SEF is among the best reported SEF in the literature. Besides, to show the robustness of the proposed structure in the presence of process and mismatch variation, 500 Monte Carlo simulations are carried out. The PSRR and CMRR mean values are 89 dB and 68 dB, respectively. Finally, the proposed neural amplifier area consumption is 0.03 mm2 without pads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信