在学习分类器系统中重用知识构建块的传感器标记方法

Liang-yu Chen, Po-Ming Lee, T. Hsiao
{"title":"在学习分类器系统中重用知识构建块的传感器标记方法","authors":"Liang-yu Chen, Po-Ming Lee, T. Hsiao","doi":"10.1109/CEC.2015.7257256","DOIUrl":null,"url":null,"abstract":"During the last decade, the extraction and reuse of building blocks of knowledge for the learning process of Extended Classifier System (XCS) in Multiplexer (MUX) problem domain have been demonstrate feasible by using Code Fragment (CF) (i.e. a tree-based structure ordinarily used in the field of Genetic Programming (GP)) as the representation of classifier conditions (the resulting system was called XCSCFC). However, the use of the tree-based structure may lead to the bloating problem and increase in time complexity when the tree grows deep. Therefore, we proposed a novel representation of classifier conditions for the XCS, named Sensory Tag (ST). The XCS with the ST as the input representation is called XCSSTC. The experiments of the proposed method were conducted in the MUX problem domain. The results indicate that the XCSSTC is capable of reusing building blocks of knowledge in the MUX problems. The current study also discussed about two different aspects of reusing of building blocks of knowledge. Specifically, we proposed the “attribution selection” part and the “logical relation between the attributes” part.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A sensor tagging approach for reusing building blocks of knowledge in learning classifier systems\",\"authors\":\"Liang-yu Chen, Po-Ming Lee, T. Hsiao\",\"doi\":\"10.1109/CEC.2015.7257256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last decade, the extraction and reuse of building blocks of knowledge for the learning process of Extended Classifier System (XCS) in Multiplexer (MUX) problem domain have been demonstrate feasible by using Code Fragment (CF) (i.e. a tree-based structure ordinarily used in the field of Genetic Programming (GP)) as the representation of classifier conditions (the resulting system was called XCSCFC). However, the use of the tree-based structure may lead to the bloating problem and increase in time complexity when the tree grows deep. Therefore, we proposed a novel representation of classifier conditions for the XCS, named Sensory Tag (ST). The XCS with the ST as the input representation is called XCSSTC. The experiments of the proposed method were conducted in the MUX problem domain. The results indicate that the XCSSTC is capable of reusing building blocks of knowledge in the MUX problems. The current study also discussed about two different aspects of reusing of building blocks of knowledge. Specifically, we proposed the “attribution selection” part and the “logical relation between the attributes” part.\",\"PeriodicalId\":403666,\"journal\":{\"name\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2015.7257256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去的十年中,在多路复用器(MUX)问题域中,扩展分类器系统(XCS)学习过程中知识构建块的提取和重用已经被证明是可行的,通过使用代码片段(CF)(即遗传规划(GP)领域中通常使用的基于树的结构)作为分类器条件的表示(所得到的系统称为XCSCFC)。然而,使用基于树的结构可能会导致膨胀问题,并且当树变深时时间复杂度会增加。因此,我们提出了一种新的XCS分类器条件表示,称为感官标签(Sensory Tag, ST)。以ST作为输入表示的XCS称为XCSSTC。在MUX问题域进行了该方法的实验。结果表明,XCSSTC能够在MUX问题中重用知识构建块。本研究还讨论了知识构建块重用的两个不同方面。具体来说,我们提出了“属性选择”部分和“属性之间的逻辑关系”部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sensor tagging approach for reusing building blocks of knowledge in learning classifier systems
During the last decade, the extraction and reuse of building blocks of knowledge for the learning process of Extended Classifier System (XCS) in Multiplexer (MUX) problem domain have been demonstrate feasible by using Code Fragment (CF) (i.e. a tree-based structure ordinarily used in the field of Genetic Programming (GP)) as the representation of classifier conditions (the resulting system was called XCSCFC). However, the use of the tree-based structure may lead to the bloating problem and increase in time complexity when the tree grows deep. Therefore, we proposed a novel representation of classifier conditions for the XCS, named Sensory Tag (ST). The XCS with the ST as the input representation is called XCSSTC. The experiments of the proposed method were conducted in the MUX problem domain. The results indicate that the XCSSTC is capable of reusing building blocks of knowledge in the MUX problems. The current study also discussed about two different aspects of reusing of building blocks of knowledge. Specifically, we proposed the “attribution selection” part and the “logical relation between the attributes” part.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信