一种提高太阳能发电可预测性的方法,来自德国的确凿证据

K. Forbes
{"title":"一种提高太阳能发电可预测性的方法,来自德国的确凿证据","authors":"K. Forbes","doi":"10.1049/icp.2021.2500","DOIUrl":null,"url":null,"abstract":"Using data from Germany's 50Hertz electric power system, this paper begins by observing that the current intraday solar energy forecasts do not fully reflect the day-ahead weather forecasts' information. Solar energy generation also has the property of being highly autoregressive. Based on those properties, an Autoregressive Moving Average with Exogenous Inputs (ARMAX) model is formulated. The model was estimated using 15-minute data from Jan 1, 2014, through Dec 31, 2017. The model is evaluated using out-of-sample data from Jan 1, 2018, to Aug 30, 2020. The 15 minute-ahead out-of-sample predictions have a weighted-mean-absolute-percentage-error (WMAPE) of about 3.84%, substantially less than the WMAPE associated with the intraday solar energy forecasts reported by the system operator over the same period.","PeriodicalId":186086,"journal":{"name":"11th Solar & Storage Power System Integration Workshop (SIW 2021)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A methodology to improve the predictability of solar energy generation with confirmatory evidence from Germany\",\"authors\":\"K. Forbes\",\"doi\":\"10.1049/icp.2021.2500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using data from Germany's 50Hertz electric power system, this paper begins by observing that the current intraday solar energy forecasts do not fully reflect the day-ahead weather forecasts' information. Solar energy generation also has the property of being highly autoregressive. Based on those properties, an Autoregressive Moving Average with Exogenous Inputs (ARMAX) model is formulated. The model was estimated using 15-minute data from Jan 1, 2014, through Dec 31, 2017. The model is evaluated using out-of-sample data from Jan 1, 2018, to Aug 30, 2020. The 15 minute-ahead out-of-sample predictions have a weighted-mean-absolute-percentage-error (WMAPE) of about 3.84%, substantially less than the WMAPE associated with the intraday solar energy forecasts reported by the system operator over the same period.\",\"PeriodicalId\":186086,\"journal\":{\"name\":\"11th Solar & Storage Power System Integration Workshop (SIW 2021)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Solar & Storage Power System Integration Workshop (SIW 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/icp.2021.2500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Solar & Storage Power System Integration Workshop (SIW 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.2500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用德国50赫兹电力系统的数据,首先观察到当前的日内太阳能预报并不能完全反映前一天的天气预报信息。太阳能发电还具有高度自回归的特性。基于这些特性,建立了带有外生输入的自回归移动平均(ARMAX)模型。该模型使用2014年1月1日至2017年12月31日的15分钟数据进行估算。该模型使用2018年1月1日至2020年8月30日的样本外数据进行评估。15分钟前的样本外预测的加权平均绝对百分比误差(WMAPE)约为3.84%,大大低于系统操作员在同一时期报告的日内太阳能预测的WMAPE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A methodology to improve the predictability of solar energy generation with confirmatory evidence from Germany
Using data from Germany's 50Hertz electric power system, this paper begins by observing that the current intraday solar energy forecasts do not fully reflect the day-ahead weather forecasts' information. Solar energy generation also has the property of being highly autoregressive. Based on those properties, an Autoregressive Moving Average with Exogenous Inputs (ARMAX) model is formulated. The model was estimated using 15-minute data from Jan 1, 2014, through Dec 31, 2017. The model is evaluated using out-of-sample data from Jan 1, 2018, to Aug 30, 2020. The 15 minute-ahead out-of-sample predictions have a weighted-mean-absolute-percentage-error (WMAPE) of about 3.84%, substantially less than the WMAPE associated with the intraday solar energy forecasts reported by the system operator over the same period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信