基于遗传算法的多无人机路径规划

Howard Li, Y. Fu, Khalid Elgazzar, L. Paull
{"title":"基于遗传算法的多无人机路径规划","authors":"Howard Li, Y. Fu, Khalid Elgazzar, L. Paull","doi":"10.1109/CCECE.2009.5090303","DOIUrl":null,"url":null,"abstract":"In the future, autonomous Unmanned Aerial Vehicles (UAVs) need to work in teams to share information and coordinate activities. The private sector and government agencies have implemented UAVs for home-land security, reconnaissance, surveillance, data collection, urban planning, and geometrics engineering. Significant research is in progress to support the decision-making process for a Multi-Agent System (MAS) consisting of multiple UAVs. This paper investigates fundamental issues in path planning for multiple UAVs. MASs with multiple UAVs are typical distributed systems. We propose to use genetic algorithms to plan multiple paths for multiple UAVs. Simulation technologies have become important to the development of aerospace vehicles. In this research, we verify the proposed path planning approach using Matlab. Simulation results demonstrate that the proposed approach is able to plan multiple paths for UAVs successfully.","PeriodicalId":153464,"journal":{"name":"2009 Canadian Conference on Electrical and Computer Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Path planning for multiple Unmanned Aerial Vehicles using genetic algorithms\",\"authors\":\"Howard Li, Y. Fu, Khalid Elgazzar, L. Paull\",\"doi\":\"10.1109/CCECE.2009.5090303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the future, autonomous Unmanned Aerial Vehicles (UAVs) need to work in teams to share information and coordinate activities. The private sector and government agencies have implemented UAVs for home-land security, reconnaissance, surveillance, data collection, urban planning, and geometrics engineering. Significant research is in progress to support the decision-making process for a Multi-Agent System (MAS) consisting of multiple UAVs. This paper investigates fundamental issues in path planning for multiple UAVs. MASs with multiple UAVs are typical distributed systems. We propose to use genetic algorithms to plan multiple paths for multiple UAVs. Simulation technologies have become important to the development of aerospace vehicles. In this research, we verify the proposed path planning approach using Matlab. Simulation results demonstrate that the proposed approach is able to plan multiple paths for UAVs successfully.\",\"PeriodicalId\":153464,\"journal\":{\"name\":\"2009 Canadian Conference on Electrical and Computer Engineering\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Canadian Conference on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2009.5090303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2009.5090303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

未来,自主无人机(uav)需要团队合作,共享信息和协调活动。私营部门和政府机构已经将无人机用于国土安全、侦察、监视、数据收集、城市规划和几何工程。支持由多架无人机组成的多智能体系统(MAS)决策过程的重要研究正在进行中。本文研究了多无人机路径规划的基本问题。具有多架无人机的MASs是典型的分布式系统。我们建议使用遗传算法为多架无人机规划多条路径。仿真技术对航天飞行器的发展具有重要意义。在本研究中,我们使用Matlab验证了所提出的路径规划方法。仿真结果表明,该方法能够成功地为无人机规划多路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path planning for multiple Unmanned Aerial Vehicles using genetic algorithms
In the future, autonomous Unmanned Aerial Vehicles (UAVs) need to work in teams to share information and coordinate activities. The private sector and government agencies have implemented UAVs for home-land security, reconnaissance, surveillance, data collection, urban planning, and geometrics engineering. Significant research is in progress to support the decision-making process for a Multi-Agent System (MAS) consisting of multiple UAVs. This paper investigates fundamental issues in path planning for multiple UAVs. MASs with multiple UAVs are typical distributed systems. We propose to use genetic algorithms to plan multiple paths for multiple UAVs. Simulation technologies have become important to the development of aerospace vehicles. In this research, we verify the proposed path planning approach using Matlab. Simulation results demonstrate that the proposed approach is able to plan multiple paths for UAVs successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信