M. L. Van de Put, A. Laturia, M. Fischetti, W. Vandenberghe
{"title":"平面波电子输运的有效模拟","authors":"M. L. Van de Put, A. Laturia, M. Fischetti, W. Vandenberghe","doi":"10.1109/SISPAD.2018.8551730","DOIUrl":null,"url":null,"abstract":"We present a method to simulate ballistic quantum transport in one-dimensional nanostructures, such as extremely scaled transistors, with a channel of nanowires or nanoribbons. In contrast to most popular approaches, we develop our method employing an accurate plane-wave basis at the atomic scale while retaining the numerical efficiency of a localized (tight-binding) basis at larger scales. At the core of our method is a finite-element expansion, where the finite element basis is enriched by a set of Bloch waves at high-symmetry points in the Brillouin zone of the crystal. We demonstrate the accuracy and efficiency of our method with the self-consistent simulation of ballistic transport in graphene nanoribbon FETs.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Modeling of Electron Transport with Plane Waves\",\"authors\":\"M. L. Van de Put, A. Laturia, M. Fischetti, W. Vandenberghe\",\"doi\":\"10.1109/SISPAD.2018.8551730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method to simulate ballistic quantum transport in one-dimensional nanostructures, such as extremely scaled transistors, with a channel of nanowires or nanoribbons. In contrast to most popular approaches, we develop our method employing an accurate plane-wave basis at the atomic scale while retaining the numerical efficiency of a localized (tight-binding) basis at larger scales. At the core of our method is a finite-element expansion, where the finite element basis is enriched by a set of Bloch waves at high-symmetry points in the Brillouin zone of the crystal. We demonstrate the accuracy and efficiency of our method with the self-consistent simulation of ballistic transport in graphene nanoribbon FETs.\",\"PeriodicalId\":170070,\"journal\":{\"name\":\"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2018.8551730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2018.8551730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Modeling of Electron Transport with Plane Waves
We present a method to simulate ballistic quantum transport in one-dimensional nanostructures, such as extremely scaled transistors, with a channel of nanowires or nanoribbons. In contrast to most popular approaches, we develop our method employing an accurate plane-wave basis at the atomic scale while retaining the numerical efficiency of a localized (tight-binding) basis at larger scales. At the core of our method is a finite-element expansion, where the finite element basis is enriched by a set of Bloch waves at high-symmetry points in the Brillouin zone of the crystal. We demonstrate the accuracy and efficiency of our method with the self-consistent simulation of ballistic transport in graphene nanoribbon FETs.