可扩展的多核声纳波束形成与计算过程网络

J. Bridgman, G. E. Allen, B. Evans
{"title":"可扩展的多核声纳波束形成与计算过程网络","authors":"J. Bridgman, G. E. Allen, B. Evans","doi":"10.1109/ACSSC.2010.5757732","DOIUrl":null,"url":null,"abstract":"This paper evaluates the scalability with respect to processor cores of a three-dimensional sonar beamforming kernel implemented on a multi-core workstation. Beamforming is an example of an extremely parallelizable problem. This implementation is instrumented with OpenMP to exploit multi-core computer systems. However, when executed on a 16-core machine, this kernel scales much less than expected. We implement this beamformer system within the scalable framework of Computational Process Networks to achieve additional performance and processor utilization for a larger number of cores. On our benchmark machine, the implementation with Computational Process Networks obtains a throughput speedup of more than two times over OpenMP with the default settings, and 13% improvement in throughput over OpenMP with optimized settings.","PeriodicalId":170947,"journal":{"name":"2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scalable multi-core sonar beamforming with Computational Process Networks\",\"authors\":\"J. Bridgman, G. E. Allen, B. Evans\",\"doi\":\"10.1109/ACSSC.2010.5757732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluates the scalability with respect to processor cores of a three-dimensional sonar beamforming kernel implemented on a multi-core workstation. Beamforming is an example of an extremely parallelizable problem. This implementation is instrumented with OpenMP to exploit multi-core computer systems. However, when executed on a 16-core machine, this kernel scales much less than expected. We implement this beamformer system within the scalable framework of Computational Process Networks to achieve additional performance and processor utilization for a larger number of cores. On our benchmark machine, the implementation with Computational Process Networks obtains a throughput speedup of more than two times over OpenMP with the default settings, and 13% improvement in throughput over OpenMP with optimized settings.\",\"PeriodicalId\":170947,\"journal\":{\"name\":\"2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2010.5757732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2010.5757732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文评估了在多核工作站上实现的三维声纳波束形成内核在处理器内核方面的可扩展性。波束形成是一个极端并行问题的例子。该实现使用OpenMP来利用多核计算机系统。然而,当在16核机器上执行时,这个内核的可伸缩性远远小于预期。我们在计算过程网络的可扩展框架内实现该波束形成系统,以实现更多内核的额外性能和处理器利用率。在我们的基准机器上,使用Computational Process Networks的实现比使用默认设置的OpenMP获得了两倍以上的吞吐量加速,并且比使用优化设置的OpenMP提高了13%的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable multi-core sonar beamforming with Computational Process Networks
This paper evaluates the scalability with respect to processor cores of a three-dimensional sonar beamforming kernel implemented on a multi-core workstation. Beamforming is an example of an extremely parallelizable problem. This implementation is instrumented with OpenMP to exploit multi-core computer systems. However, when executed on a 16-core machine, this kernel scales much less than expected. We implement this beamformer system within the scalable framework of Computational Process Networks to achieve additional performance and processor utilization for a larger number of cores. On our benchmark machine, the implementation with Computational Process Networks obtains a throughput speedup of more than two times over OpenMP with the default settings, and 13% improvement in throughput over OpenMP with optimized settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信