肝分割方法在肝癌治疗规划中的应用

Snigdha Mohanty, J. Abinahed, A. Al-Ansari, S. Mishra, S. Singh, S. Dakua
{"title":"肝分割方法在肝癌治疗规划中的应用","authors":"Snigdha Mohanty, J. Abinahed, A. Al-Ansari, S. Mishra, S. Singh, S. Dakua","doi":"10.1109/INDIN51773.2022.9976118","DOIUrl":null,"url":null,"abstract":"The delineation of liver difficult due to its similar intensity distributions in CT images. Additionally, there have been other challenges such that the variability in shape, size, and proximity to the other neighboring organs. The blurred liver edges and low contrast on the CT image make the segmentation further challenging. Furthermore, the patient movement during CT data acquisition along with spatial averaging lead to reconstruction artifacts; these are all reflected on the CT image complicating the segmentation task. In this paper, we have proposed a UNet-based automatic liver segmentation approach to delineate the boundaries between the liver and other abdominal organs. The algorithm is tested on publicly available datasets. The average values of Dice similarity coefficient (DC), Relative absolute volume difference (RAVD), Average symmetric surface distance (ASSD), Maximum symmetric surface distance (MSSD), Hausdorff distance (HD), and Precision are found to be 0.95±0.02, 0.04±0.02, 1.03±0.39, 1.15±0.5, 2.85±1.89, and 0.91±0.12, respectively.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Developing a Liver Segmentation Method for Hepatocellular Carcinoma Treatment Planning\",\"authors\":\"Snigdha Mohanty, J. Abinahed, A. Al-Ansari, S. Mishra, S. Singh, S. Dakua\",\"doi\":\"10.1109/INDIN51773.2022.9976118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The delineation of liver difficult due to its similar intensity distributions in CT images. Additionally, there have been other challenges such that the variability in shape, size, and proximity to the other neighboring organs. The blurred liver edges and low contrast on the CT image make the segmentation further challenging. Furthermore, the patient movement during CT data acquisition along with spatial averaging lead to reconstruction artifacts; these are all reflected on the CT image complicating the segmentation task. In this paper, we have proposed a UNet-based automatic liver segmentation approach to delineate the boundaries between the liver and other abdominal organs. The algorithm is tested on publicly available datasets. The average values of Dice similarity coefficient (DC), Relative absolute volume difference (RAVD), Average symmetric surface distance (ASSD), Maximum symmetric surface distance (MSSD), Hausdorff distance (HD), and Precision are found to be 0.95±0.02, 0.04±0.02, 1.03±0.39, 1.15±0.5, 2.85±1.89, and 0.91±0.12, respectively.\",\"PeriodicalId\":359190,\"journal\":{\"name\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN51773.2022.9976118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于肝脏在CT图像上的强度分布相似,因此很难描绘肝脏。此外,还有其他挑战,如形状、大小的可变性,以及与其他邻近器官的接近程度。肝脏边缘模糊,CT图像对比度低,使得分割更加困难。此外,在CT数据采集过程中,患者的运动以及空间平均会导致重建伪影;这些都反映在CT图像上,使分割任务复杂化。在本文中,我们提出了一种基于unet的自动肝脏分割方法来划定肝脏和其他腹部器官之间的边界。该算法在公开可用的数据集上进行了测试。Dice相似系数(DC)、相对绝对体积差(RAVD)、平均对称表面距离(ASSD)、最大对称表面距离(MSSD)、Hausdorff距离(HD)和精度(Precision)的平均值分别为0.95±0.02、0.04±0.02、1.03±0.39、1.15±0.5、2.85±1.89和0.91±0.12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Developing a Liver Segmentation Method for Hepatocellular Carcinoma Treatment Planning
The delineation of liver difficult due to its similar intensity distributions in CT images. Additionally, there have been other challenges such that the variability in shape, size, and proximity to the other neighboring organs. The blurred liver edges and low contrast on the CT image make the segmentation further challenging. Furthermore, the patient movement during CT data acquisition along with spatial averaging lead to reconstruction artifacts; these are all reflected on the CT image complicating the segmentation task. In this paper, we have proposed a UNet-based automatic liver segmentation approach to delineate the boundaries between the liver and other abdominal organs. The algorithm is tested on publicly available datasets. The average values of Dice similarity coefficient (DC), Relative absolute volume difference (RAVD), Average symmetric surface distance (ASSD), Maximum symmetric surface distance (MSSD), Hausdorff distance (HD), and Precision are found to be 0.95±0.02, 0.04±0.02, 1.03±0.39, 1.15±0.5, 2.85±1.89, and 0.91±0.12, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信