{"title":"利用多视图方法增强嵌入式人工智能目标检测","authors":"Z. Ning, Mostafa Rizk, A. Baghdadi, J. Diguet","doi":"10.1109/RSP57251.2022.10039026","DOIUrl":null,"url":null,"abstract":"Object detection based on convolutional neural network (CNN) is widely used in multitude emergent applications. Yet, the deployment of CNNs on embedded devices at the edge with reduced resources and power budget poses a real challenge. In this paper, we address this issue by enhancing the detection performance without impacting the inference speed. We investigate the use of multi-view for the same scene to achieve better detection performance. A novel system of distributed smart cameras is proposed where each camera integrates a CNN for detection. Implementation results show that using light networks on the distributed cameras can lead to better detection performance and a reduction in the overall consumed power.","PeriodicalId":201919,"journal":{"name":"2022 IEEE International Workshop on Rapid System Prototyping (RSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing embedded AI-based object detection using multi-view approach\",\"authors\":\"Z. Ning, Mostafa Rizk, A. Baghdadi, J. Diguet\",\"doi\":\"10.1109/RSP57251.2022.10039026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection based on convolutional neural network (CNN) is widely used in multitude emergent applications. Yet, the deployment of CNNs on embedded devices at the edge with reduced resources and power budget poses a real challenge. In this paper, we address this issue by enhancing the detection performance without impacting the inference speed. We investigate the use of multi-view for the same scene to achieve better detection performance. A novel system of distributed smart cameras is proposed where each camera integrates a CNN for detection. Implementation results show that using light networks on the distributed cameras can lead to better detection performance and a reduction in the overall consumed power.\",\"PeriodicalId\":201919,\"journal\":{\"name\":\"2022 IEEE International Workshop on Rapid System Prototyping (RSP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Workshop on Rapid System Prototyping (RSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSP57251.2022.10039026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Workshop on Rapid System Prototyping (RSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSP57251.2022.10039026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing embedded AI-based object detection using multi-view approach
Object detection based on convolutional neural network (CNN) is widely used in multitude emergent applications. Yet, the deployment of CNNs on embedded devices at the edge with reduced resources and power budget poses a real challenge. In this paper, we address this issue by enhancing the detection performance without impacting the inference speed. We investigate the use of multi-view for the same scene to achieve better detection performance. A novel system of distributed smart cameras is proposed where each camera integrates a CNN for detection. Implementation results show that using light networks on the distributed cameras can lead to better detection performance and a reduction in the overall consumed power.