{"title":"作为聚合算子的模糊测度和积分:可通约性问题的求解","authors":"François Modave, V. Kreinovich","doi":"10.1109/NAFIPS.2002.1018072","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to shed light on the use of fuzzy measures and integrals as aggregation operators in multicriteria decision making. These techniques have been widely used on an ad hoc basis, but with no axiomatization. It is possible to obtain preference representation theorems in multicriteria decision making problems, relying on a formal parallelism between decision under uncertainty and multicriteria decision making. Though, it raises some commensurability problems. In this paper, we show how to obtain an axiomatization of multicriteria decision making problems, in a very natural way, and we show how to solve the commensurability problem in a particular case.","PeriodicalId":348314,"journal":{"name":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fuzzy measures and integrals as aggregation operators: solving the commensurability problem\",\"authors\":\"François Modave, V. Kreinovich\",\"doi\":\"10.1109/NAFIPS.2002.1018072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to shed light on the use of fuzzy measures and integrals as aggregation operators in multicriteria decision making. These techniques have been widely used on an ad hoc basis, but with no axiomatization. It is possible to obtain preference representation theorems in multicriteria decision making problems, relying on a formal parallelism between decision under uncertainty and multicriteria decision making. Though, it raises some commensurability problems. In this paper, we show how to obtain an axiomatization of multicriteria decision making problems, in a very natural way, and we show how to solve the commensurability problem in a particular case.\",\"PeriodicalId\":348314,\"journal\":{\"name\":\"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2002.1018072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2002.1018072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy measures and integrals as aggregation operators: solving the commensurability problem
The aim of this paper is to shed light on the use of fuzzy measures and integrals as aggregation operators in multicriteria decision making. These techniques have been widely used on an ad hoc basis, but with no axiomatization. It is possible to obtain preference representation theorems in multicriteria decision making problems, relying on a formal parallelism between decision under uncertainty and multicriteria decision making. Though, it raises some commensurability problems. In this paper, we show how to obtain an axiomatization of multicriteria decision making problems, in a very natural way, and we show how to solve the commensurability problem in a particular case.