数据收集对学生模型解释和评价的影响

Radek Pelánek, Jirí Rihák, Jan Papousek
{"title":"数据收集对学生模型解释和评价的影响","authors":"Radek Pelánek, Jirí Rihák, Jan Papousek","doi":"10.1145/2883851.2883868","DOIUrl":null,"url":null,"abstract":"Student modeling techniques are evaluated mostly using historical data. Researchers typically do not pay attention to details of the origin of the used data sets. However, the way data are collected can have important impact on evaluation and interpretation of student models. We discuss in detail two ways how data collection in educational systems can influence results: mastery attrition bias and adaptive choice of items. We systematically discuss previous work related to these biases and illustrate the main points using both simulated and real data. We summarize specific consequences for practice -- not just for doing evaluation of student models, but also for data collection and publication of data sets.","PeriodicalId":343844,"journal":{"name":"Proceedings of the Sixth International Conference on Learning Analytics & Knowledge","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Impact of data collection on interpretation and evaluation of student models\",\"authors\":\"Radek Pelánek, Jirí Rihák, Jan Papousek\",\"doi\":\"10.1145/2883851.2883868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Student modeling techniques are evaluated mostly using historical data. Researchers typically do not pay attention to details of the origin of the used data sets. However, the way data are collected can have important impact on evaluation and interpretation of student models. We discuss in detail two ways how data collection in educational systems can influence results: mastery attrition bias and adaptive choice of items. We systematically discuss previous work related to these biases and illustrate the main points using both simulated and real data. We summarize specific consequences for practice -- not just for doing evaluation of student models, but also for data collection and publication of data sets.\",\"PeriodicalId\":343844,\"journal\":{\"name\":\"Proceedings of the Sixth International Conference on Learning Analytics & Knowledge\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth International Conference on Learning Analytics & Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2883851.2883868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2883851.2883868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

学生建模技术主要使用历史数据进行评估。研究人员通常不会注意所使用数据集的来源细节。然而,收集数据的方式可能对学生模型的评估和解释产生重要影响。我们详细讨论了教育系统中数据收集如何影响结果的两种方式:掌握损耗偏差和项目的适应性选择。我们系统地讨论了与这些偏差相关的先前工作,并使用模拟和真实数据说明了要点。我们总结了实践的具体结果——不仅是对学生模型的评估,而且是对数据收集和数据集的发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of data collection on interpretation and evaluation of student models
Student modeling techniques are evaluated mostly using historical data. Researchers typically do not pay attention to details of the origin of the used data sets. However, the way data are collected can have important impact on evaluation and interpretation of student models. We discuss in detail two ways how data collection in educational systems can influence results: mastery attrition bias and adaptive choice of items. We systematically discuss previous work related to these biases and illustrate the main points using both simulated and real data. We summarize specific consequences for practice -- not just for doing evaluation of student models, but also for data collection and publication of data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信