基于递归极大似然迭代的辨识结构参数优化

Wanjun Zhang, Feng Zhang, Jingxuan Zhang, Jingyi Zhang, Jingyan Zhang
{"title":"基于递归极大似然迭代的辨识结构参数优化","authors":"Wanjun Zhang, Feng Zhang, Jingxuan Zhang, Jingyi Zhang, Jingyan Zhang","doi":"10.1109/icomssc45026.2018.8941760","DOIUrl":null,"url":null,"abstract":"The probability distribution of the maximum likelihood method requires that the probability distribution of data is known and obeys the Gauss distribution. The structural parameters of the equivalent prediction error have great influence on the modeling accuracy of the system model. In order to improve the modeling accuracy, a recursive maximum likelihood iterative identification method is proposed to optimize the identification structure parameters. The simulation results verify the feasibility and effectiveness of the proposed identification and modeling method.","PeriodicalId":332213,"journal":{"name":"2018 International Computers, Signals and Systems Conference (ICOMSSC)","volume":"os-15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Optimization of Identification Structure Parameters Based on Recursive Maximum Likelihood Iteration\",\"authors\":\"Wanjun Zhang, Feng Zhang, Jingxuan Zhang, Jingyi Zhang, Jingyan Zhang\",\"doi\":\"10.1109/icomssc45026.2018.8941760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The probability distribution of the maximum likelihood method requires that the probability distribution of data is known and obeys the Gauss distribution. The structural parameters of the equivalent prediction error have great influence on the modeling accuracy of the system model. In order to improve the modeling accuracy, a recursive maximum likelihood iterative identification method is proposed to optimize the identification structure parameters. The simulation results verify the feasibility and effectiveness of the proposed identification and modeling method.\",\"PeriodicalId\":332213,\"journal\":{\"name\":\"2018 International Computers, Signals and Systems Conference (ICOMSSC)\",\"volume\":\"os-15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Computers, Signals and Systems Conference (ICOMSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icomssc45026.2018.8941760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Computers, Signals and Systems Conference (ICOMSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icomssc45026.2018.8941760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

最大似然法的概率分布要求数据的概率分布是已知的,并且服从高斯分布。等效预测误差的结构参数对系统模型的建模精度影响很大。为了提高建模精度,提出了一种递归极大似然迭代识别方法,对识别结构参数进行优化。仿真结果验证了所提出的识别和建模方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Identification Structure Parameters Based on Recursive Maximum Likelihood Iteration
The probability distribution of the maximum likelihood method requires that the probability distribution of data is known and obeys the Gauss distribution. The structural parameters of the equivalent prediction error have great influence on the modeling accuracy of the system model. In order to improve the modeling accuracy, a recursive maximum likelihood iterative identification method is proposed to optimize the identification structure parameters. The simulation results verify the feasibility and effectiveness of the proposed identification and modeling method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信