{"title":"长霍夫曼序列的近似表达式","authors":"Y. Tanada, Kiminori Sato","doi":"10.1109/IWSDA.2009.5346403","DOIUrl":null,"url":null,"abstract":"Huffman sequence has impulsive autocorrelation function and is applicable to radar and communications. This paper describes approximate expression for the sequence and considers sequence values. The sequence spectrum is expanded to polynomial groups related to approximate sequences. The first-order approximate sequence with real value is similar to a real-valued orthogonal periodic sequence with phase parameters {0,π } . The maximum absolute value of the Huffman sequence is estimated on the basis of the maximum absolute value of the first-order approximate sequence.","PeriodicalId":120760,"journal":{"name":"2009 Fourth International Workshop on Signal Design and its Applications in Communications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Approximate expression for long length huffman sequence\",\"authors\":\"Y. Tanada, Kiminori Sato\",\"doi\":\"10.1109/IWSDA.2009.5346403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Huffman sequence has impulsive autocorrelation function and is applicable to radar and communications. This paper describes approximate expression for the sequence and considers sequence values. The sequence spectrum is expanded to polynomial groups related to approximate sequences. The first-order approximate sequence with real value is similar to a real-valued orthogonal periodic sequence with phase parameters {0,π } . The maximum absolute value of the Huffman sequence is estimated on the basis of the maximum absolute value of the first-order approximate sequence.\",\"PeriodicalId\":120760,\"journal\":{\"name\":\"2009 Fourth International Workshop on Signal Design and its Applications in Communications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth International Workshop on Signal Design and its Applications in Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA.2009.5346403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Workshop on Signal Design and its Applications in Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2009.5346403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximate expression for long length huffman sequence
Huffman sequence has impulsive autocorrelation function and is applicable to radar and communications. This paper describes approximate expression for the sequence and considers sequence values. The sequence spectrum is expanded to polynomial groups related to approximate sequences. The first-order approximate sequence with real value is similar to a real-valued orthogonal periodic sequence with phase parameters {0,π } . The maximum absolute value of the Huffman sequence is estimated on the basis of the maximum absolute value of the first-order approximate sequence.