Jan Klein, S. Bhulai, M. Hoogendoorn, R. Mei, Raymond Hinfelaar
{"title":"1999年以后的网络入侵检测:将机器学习技术应用于部分标记的网络安全数据集","authors":"Jan Klein, S. Bhulai, M. Hoogendoorn, R. Mei, Raymond Hinfelaar","doi":"10.1109/WI.2018.00017","DOIUrl":null,"url":null,"abstract":"This paper demonstrates how different machine learning techniques performed on a recent, partially labeled dataset (based on the Locked Shields 2017 exercise) and which features were deemed important. Moreover, a cybersecurity expert analyzed the results and validated that the models were able to classify the known intrusions as malicious and that they discovered new attacks. In a set of 500 detected anomalies, 50 previously unknown intrusions were found. Given that such observations are uncommon, this indicates how well an unlabeled dataset can be used to construct and to evaluate a network intrusion detection system.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detecting Network Intrusion beyond 1999: Applying Machine Learning Techniques to a Partially Labeled Cybersecurity Dataset\",\"authors\":\"Jan Klein, S. Bhulai, M. Hoogendoorn, R. Mei, Raymond Hinfelaar\",\"doi\":\"10.1109/WI.2018.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates how different machine learning techniques performed on a recent, partially labeled dataset (based on the Locked Shields 2017 exercise) and which features were deemed important. Moreover, a cybersecurity expert analyzed the results and validated that the models were able to classify the known intrusions as malicious and that they discovered new attacks. In a set of 500 detected anomalies, 50 previously unknown intrusions were found. Given that such observations are uncommon, this indicates how well an unlabeled dataset can be used to construct and to evaluate a network intrusion detection system.\",\"PeriodicalId\":405966,\"journal\":{\"name\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2018.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting Network Intrusion beyond 1999: Applying Machine Learning Techniques to a Partially Labeled Cybersecurity Dataset
This paper demonstrates how different machine learning techniques performed on a recent, partially labeled dataset (based on the Locked Shields 2017 exercise) and which features were deemed important. Moreover, a cybersecurity expert analyzed the results and validated that the models were able to classify the known intrusions as malicious and that they discovered new attacks. In a set of 500 detected anomalies, 50 previously unknown intrusions were found. Given that such observations are uncommon, this indicates how well an unlabeled dataset can be used to construct and to evaluate a network intrusion detection system.