基于文本独立语音的嘈杂环境下学生考勤系统

S. Nidhyananthan, R. Shantha, Selva Kumari
{"title":"基于文本独立语音的嘈杂环境下学生考勤系统","authors":"S. Nidhyananthan, R. Shantha, Selva Kumari","doi":"10.1109/CNT.2014.7062751","DOIUrl":null,"url":null,"abstract":"This paper motivates the use of RASTA-MFCC (RelAtive SpecTrA-Mel Frequency Cepstral Coefficients) feature and GMM-UBM modeling for text independent voice based students' attendance system under noisy environment. MFCC has been identified as an efficient feature for identifying the speaker because it extracts speaker specific information. The performance of even best speaker identification system with MFCC feature degrades in uncontrolled communication environment. RASTA processing of speech improves the performance of identification system even in the presence of convolutional and additive noise. This paper combines the best of these two processes to yield RASTA-MFCC feature which is robust to noise and also contributes speaker dependent information to identify the speaker efficiently. GMM-UBM (Gaussian Mixture Model-Universal Background Model) modeling technique is used for its faster training and relatively easier updating of new speakers. Experimental result of 93.2% accuracy for Triangular filter bank and 94.5% accuracy for Gaussian filter bank are obtained for 50 speakers of MEPCO speech database in presence of additive and convolutive noise in the context of voice based students' attendance entry.","PeriodicalId":347883,"journal":{"name":"2014 International Conference on Communication and Network Technologies","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Text independent voice based students attendance system under noisy environment using RASTA-MFCC feature\",\"authors\":\"S. Nidhyananthan, R. Shantha, Selva Kumari\",\"doi\":\"10.1109/CNT.2014.7062751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper motivates the use of RASTA-MFCC (RelAtive SpecTrA-Mel Frequency Cepstral Coefficients) feature and GMM-UBM modeling for text independent voice based students' attendance system under noisy environment. MFCC has been identified as an efficient feature for identifying the speaker because it extracts speaker specific information. The performance of even best speaker identification system with MFCC feature degrades in uncontrolled communication environment. RASTA processing of speech improves the performance of identification system even in the presence of convolutional and additive noise. This paper combines the best of these two processes to yield RASTA-MFCC feature which is robust to noise and also contributes speaker dependent information to identify the speaker efficiently. GMM-UBM (Gaussian Mixture Model-Universal Background Model) modeling technique is used for its faster training and relatively easier updating of new speakers. Experimental result of 93.2% accuracy for Triangular filter bank and 94.5% accuracy for Gaussian filter bank are obtained for 50 speakers of MEPCO speech database in presence of additive and convolutive noise in the context of voice based students' attendance entry.\",\"PeriodicalId\":347883,\"journal\":{\"name\":\"2014 International Conference on Communication and Network Technologies\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Communication and Network Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNT.2014.7062751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Communication and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNT.2014.7062751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文将RASTA-MFCC (RelAtive spectrum - mel Frequency Cepstral Coefficients)特征和GMM-UBM建模应用于噪声环境下基于文本独立语音的学生考勤系统。MFCC提取说话人的特定信息,被认为是识别说话人的有效特征。在不受控制的通信环境中,即使是最好的带有MFCC特征的说话人识别系统的性能也会下降。语音的RASTA处理提高了识别系统的性能,即使在存在卷积和加性噪声的情况下。本文结合了这两种方法的优点,得到了对噪声具有鲁棒性的RASTA-MFCC特征,并提供了与说话人相关的信息,从而有效地识别说话人。GMM-UBM(高斯混合模型-通用背景模型)建模技术用于更快的训练和相对容易的更新新的说话者。在基于语音的学生考勤录入环境下,对MEPCO语音数据库中50位说话人在加性噪声和卷积噪声存在的情况下,三角滤波器组的准确率为93.2%,高斯滤波器组的准确率为94.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text independent voice based students attendance system under noisy environment using RASTA-MFCC feature
This paper motivates the use of RASTA-MFCC (RelAtive SpecTrA-Mel Frequency Cepstral Coefficients) feature and GMM-UBM modeling for text independent voice based students' attendance system under noisy environment. MFCC has been identified as an efficient feature for identifying the speaker because it extracts speaker specific information. The performance of even best speaker identification system with MFCC feature degrades in uncontrolled communication environment. RASTA processing of speech improves the performance of identification system even in the presence of convolutional and additive noise. This paper combines the best of these two processes to yield RASTA-MFCC feature which is robust to noise and also contributes speaker dependent information to identify the speaker efficiently. GMM-UBM (Gaussian Mixture Model-Universal Background Model) modeling technique is used for its faster training and relatively easier updating of new speakers. Experimental result of 93.2% accuracy for Triangular filter bank and 94.5% accuracy for Gaussian filter bank are obtained for 50 speakers of MEPCO speech database in presence of additive and convolutive noise in the context of voice based students' attendance entry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信