三维集成电路中的冷却机制:热机械的观点

S. Kandlikar, D. Kudithipudi, C. Rubio-Jimenez
{"title":"三维集成电路中的冷却机制:热机械的观点","authors":"S. Kandlikar, D. Kudithipudi, C. Rubio-Jimenez","doi":"10.1109/IGCC.2011.6008573","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) integrated circuits (IC) impose several challenges in thermal management. Stacking vertical layers significantly increases the heat dissipation per unit volume and the thermal footprint per unit area. The internal layers in the stacks are susceptible to high thermal gradients due to the low thermal conductivity interfaces and the distance from the heat sink. Several factors affect the thermal behavior of the 3D IC, including the through silicon vias, bonding, and cooling mechanisms. In this paper, we provide a detailed review of existing cooling mechanisms and their applicability to 3D ICs. We also propose two parameters to account for the thermal interactions among the devices and stack layers for incorporation in the 3D IC cooling system design: Thermal Intensification Factor (TIF) accounts for the increased heat flux due to multiple ICs along the heat transfer path, and Thermal Derating Factor (TDF) accounts for the increased thermal resistance introduced by the multiple layers. Also, a new flow passage design with variable fin density is presented to reduce the surface temperature non-uniformity along the coolant flow length.","PeriodicalId":306876,"journal":{"name":"2011 International Green Computing Conference and Workshops","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Cooling mechanisms in 3D ICs: Thermo-mechanical perspective\",\"authors\":\"S. Kandlikar, D. Kudithipudi, C. Rubio-Jimenez\",\"doi\":\"10.1109/IGCC.2011.6008573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional (3D) integrated circuits (IC) impose several challenges in thermal management. Stacking vertical layers significantly increases the heat dissipation per unit volume and the thermal footprint per unit area. The internal layers in the stacks are susceptible to high thermal gradients due to the low thermal conductivity interfaces and the distance from the heat sink. Several factors affect the thermal behavior of the 3D IC, including the through silicon vias, bonding, and cooling mechanisms. In this paper, we provide a detailed review of existing cooling mechanisms and their applicability to 3D ICs. We also propose two parameters to account for the thermal interactions among the devices and stack layers for incorporation in the 3D IC cooling system design: Thermal Intensification Factor (TIF) accounts for the increased heat flux due to multiple ICs along the heat transfer path, and Thermal Derating Factor (TDF) accounts for the increased thermal resistance introduced by the multiple layers. Also, a new flow passage design with variable fin density is presented to reduce the surface temperature non-uniformity along the coolant flow length.\",\"PeriodicalId\":306876,\"journal\":{\"name\":\"2011 International Green Computing Conference and Workshops\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Green Computing Conference and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2011.6008573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Green Computing Conference and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2011.6008573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

三维(3D)集成电路(IC)在热管理方面提出了一些挑战。垂直层的堆叠显著增加了单位体积的散热和单位面积的热足迹。由于低导热界面和与散热器的距离,堆中的内层容易受到高热梯度的影响。影响3D集成电路热性能的因素有几个,包括硅通孔、键合和冷却机制。在本文中,我们提供了现有的冷却机制及其在3D集成电路中的适用性的详细综述。我们还提出了两个参数来解释器件和堆叠层之间的热相互作用,以纳入3D IC冷却系统设计中:热强化因子(TIF)解释了由于沿传热路径的多个IC而增加的热通量,热降额因子(TDF)解释了多层引入的热阻增加。同时,提出了一种新的变翅片密度流道设计,以减小冷却剂流长的表面温度不均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooling mechanisms in 3D ICs: Thermo-mechanical perspective
Three-dimensional (3D) integrated circuits (IC) impose several challenges in thermal management. Stacking vertical layers significantly increases the heat dissipation per unit volume and the thermal footprint per unit area. The internal layers in the stacks are susceptible to high thermal gradients due to the low thermal conductivity interfaces and the distance from the heat sink. Several factors affect the thermal behavior of the 3D IC, including the through silicon vias, bonding, and cooling mechanisms. In this paper, we provide a detailed review of existing cooling mechanisms and their applicability to 3D ICs. We also propose two parameters to account for the thermal interactions among the devices and stack layers for incorporation in the 3D IC cooling system design: Thermal Intensification Factor (TIF) accounts for the increased heat flux due to multiple ICs along the heat transfer path, and Thermal Derating Factor (TDF) accounts for the increased thermal resistance introduced by the multiple layers. Also, a new flow passage design with variable fin density is presented to reduce the surface temperature non-uniformity along the coolant flow length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信