感知器会反击

R. Beigel, N. Reingold, D. Spielman
{"title":"感知器会反击","authors":"R. Beigel, N. Reingold, D. Spielman","doi":"10.1109/SCT.1991.160270","DOIUrl":null,"url":null,"abstract":"It is shown that every AC/sup 0/ predicate is computed by a low-degree probabilistic polynomial over the reals. It is demonstrated that circuits composed of a symmetric gate at the root with AND-OR subcircuits of constant depth can be simulated by probabilistic depth-2 circuits with essentially the same symmetric gate at the root and AND gates of small fanin at the bottom. In particular, every language recognized by a depth-d AC/sup 0/ circuit is decidable by a probabilistic perceptron of size 2 to the power O(log/sup 4d/ n) and of order O(log/sup 4d/ n) that uses O(log/sup 3/ n) probabilistic bits. As a corollary, the authors present a new proof that depth-d AND-OR circuits computing the parity of n binary inputs require size 2 to the power n/sup Omega (1/d)/.<<ETX>>","PeriodicalId":158682,"journal":{"name":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"The perceptron strikes back\",\"authors\":\"R. Beigel, N. Reingold, D. Spielman\",\"doi\":\"10.1109/SCT.1991.160270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that every AC/sup 0/ predicate is computed by a low-degree probabilistic polynomial over the reals. It is demonstrated that circuits composed of a symmetric gate at the root with AND-OR subcircuits of constant depth can be simulated by probabilistic depth-2 circuits with essentially the same symmetric gate at the root and AND gates of small fanin at the bottom. In particular, every language recognized by a depth-d AC/sup 0/ circuit is decidable by a probabilistic perceptron of size 2 to the power O(log/sup 4d/ n) and of order O(log/sup 4d/ n) that uses O(log/sup 3/ n) probabilistic bits. As a corollary, the authors present a new proof that depth-d AND-OR circuits computing the parity of n binary inputs require size 2 to the power n/sup Omega (1/d)/.<<ETX>>\",\"PeriodicalId\":158682,\"journal\":{\"name\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1991.160270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1991.160270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

结果表明,每个AC/sup 0/谓词都是通过实数上的低次概率多项式来计算的。结果表明,由根对称门和等深与或子电路组成的电路可以用概率深度-2电路模拟,根对称门和底部小fanin的与门基本相同。特别是,由深度d AC/sup 0/电路识别的每种语言都可以由大小为2的O次方(log/sup 4d/ n)和O阶(log/sup 4d/ n)的概率感知器确定,该感知器使用O(log/sup 3/ n)个概率位。作为推论,作者提出了一个新的证明,即计算n个二进制输入的奇偶性的深度d AND-OR电路需要大小为2的n/sup ω (1/d)/次方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The perceptron strikes back
It is shown that every AC/sup 0/ predicate is computed by a low-degree probabilistic polynomial over the reals. It is demonstrated that circuits composed of a symmetric gate at the root with AND-OR subcircuits of constant depth can be simulated by probabilistic depth-2 circuits with essentially the same symmetric gate at the root and AND gates of small fanin at the bottom. In particular, every language recognized by a depth-d AC/sup 0/ circuit is decidable by a probabilistic perceptron of size 2 to the power O(log/sup 4d/ n) and of order O(log/sup 4d/ n) that uses O(log/sup 3/ n) probabilistic bits. As a corollary, the authors present a new proof that depth-d AND-OR circuits computing the parity of n binary inputs require size 2 to the power n/sup Omega (1/d)/.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信