大规模模拟人类以评估电视语音接口:康卡斯特的往返系统

B. Baldwin, Lauren Reese, LIming Zhang, Jan Neumann, Taylor Cassidy, Michael Pereira, G. C. Murray, Kishorekumar Sundararajan, Yidnekachew Endale, Pramod Kadagattor, Paul Wolfe, Brian Aiken, Tony Braskich, Donte Jiggetts, Adam Sloan, Esther Vaturi, Crystal Pender, Ferhan Ture
{"title":"大规模模拟人类以评估电视语音接口:康卡斯特的往返系统","authors":"B. Baldwin, Lauren Reese, LIming Zhang, Jan Neumann, Taylor Cassidy, Michael Pereira, G. C. Murray, Kishorekumar Sundararajan, Yidnekachew Endale, Pramod Kadagattor, Paul Wolfe, Brian Aiken, Tony Braskich, Donte Jiggetts, Adam Sloan, Esther Vaturi, Crystal Pender, Ferhan Ture","doi":"10.1145/3539597.3575787","DOIUrl":null,"url":null,"abstract":"Evaluating large-scale customer-facing voice interfaces involves a variety of challenges, such as data privacy, fairness or unintended bias, and the cost of human labor. Comcast's Xfinity Voice Remote is one such voice interface aimed at users looking to discover content on their TVs. The artificial intelligence (AI) behind the voice remote currently powers multiple voice interfaces, serving tens of millions of requests every day, from users across the globe.In this talk, we introduce a novel Round-Trip system we have built to evaluate the AI serving these voice interfaces in a semi-automated manner, providing a robust and cheap alternative to traditional quality assurance methods. We discuss five specific challenges we have encountered in Round-Trip and describe our solutions in detail.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating Humans at Scale to Evaluate Voice Interfaces for TVs: the Round-Trip System at Comcast\",\"authors\":\"B. Baldwin, Lauren Reese, LIming Zhang, Jan Neumann, Taylor Cassidy, Michael Pereira, G. C. Murray, Kishorekumar Sundararajan, Yidnekachew Endale, Pramod Kadagattor, Paul Wolfe, Brian Aiken, Tony Braskich, Donte Jiggetts, Adam Sloan, Esther Vaturi, Crystal Pender, Ferhan Ture\",\"doi\":\"10.1145/3539597.3575787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluating large-scale customer-facing voice interfaces involves a variety of challenges, such as data privacy, fairness or unintended bias, and the cost of human labor. Comcast's Xfinity Voice Remote is one such voice interface aimed at users looking to discover content on their TVs. The artificial intelligence (AI) behind the voice remote currently powers multiple voice interfaces, serving tens of millions of requests every day, from users across the globe.In this talk, we introduce a novel Round-Trip system we have built to evaluate the AI serving these voice interfaces in a semi-automated manner, providing a robust and cheap alternative to traditional quality assurance methods. We discuss five specific challenges we have encountered in Round-Trip and describe our solutions in detail.\",\"PeriodicalId\":227804,\"journal\":{\"name\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539597.3575787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3575787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

评估大规模面向客户的语音接口涉及各种挑战,例如数据隐私、公平性或无意的偏见,以及人力成本。康卡斯特(Comcast)的Xfinity Voice Remote就是这样一种语音界面,旨在帮助用户发现电视上的内容。语音遥控器背后的人工智能(AI)目前为多个语音接口提供支持,每天为来自全球用户的数千万个请求提供服务。在这次演讲中,我们介绍了一个新的往返系统,我们已经建立了评估人工智能服务这些语音接口以半自动化的方式,提供了一个强大的和廉价的替代传统的质量保证方法。我们将讨论在Round-Trip中遇到的五个具体挑战,并详细描述我们的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulating Humans at Scale to Evaluate Voice Interfaces for TVs: the Round-Trip System at Comcast
Evaluating large-scale customer-facing voice interfaces involves a variety of challenges, such as data privacy, fairness or unintended bias, and the cost of human labor. Comcast's Xfinity Voice Remote is one such voice interface aimed at users looking to discover content on their TVs. The artificial intelligence (AI) behind the voice remote currently powers multiple voice interfaces, serving tens of millions of requests every day, from users across the globe.In this talk, we introduce a novel Round-Trip system we have built to evaluate the AI serving these voice interfaces in a semi-automated manner, providing a robust and cheap alternative to traditional quality assurance methods. We discuss five specific challenges we have encountered in Round-Trip and describe our solutions in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信