用黑肖尔斯时间分数阶非线性偏微分方程求解两种股票的期权定价

K. Zakaria, S. Hafeez
{"title":"用黑肖尔斯时间分数阶非线性偏微分方程求解两种股票的期权定价","authors":"K. Zakaria, S. Hafeez","doi":"10.1109/iCoMET48670.2020.9073866","DOIUrl":null,"url":null,"abstract":"The BS equations with fractional order two asset price model give the better prediction of options pricing in the monetary market. In this paper, the changed form of BS-condition with two asset price models dependent on the Liovelle-Caputo derivative for good predictions of options prices is utilized. The analytical solution is demonstrated in form of convergent infinite series and obtained by the properties of Samdu Transform.","PeriodicalId":431051,"journal":{"name":"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Options Pricing for Two Stocks by Black – Sholes Time Fractional Order Non – Linear Partial Differential Equation\",\"authors\":\"K. Zakaria, S. Hafeez\",\"doi\":\"10.1109/iCoMET48670.2020.9073866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The BS equations with fractional order two asset price model give the better prediction of options pricing in the monetary market. In this paper, the changed form of BS-condition with two asset price models dependent on the Liovelle-Caputo derivative for good predictions of options prices is utilized. The analytical solution is demonstrated in form of convergent infinite series and obtained by the properties of Samdu Transform.\",\"PeriodicalId\":431051,\"journal\":{\"name\":\"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCoMET48670.2020.9073866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCoMET48670.2020.9073866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

带有分数阶二资产价格模型的BS方程能较好地预测货币市场上的期权定价。本文利用bs条件的变化形式和两个依赖Liovelle-Caputo导数的资产价格模型,对期权价格进行了较好的预测。利用Samdu变换的性质,以收敛无穷级数的形式给出了解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Options Pricing for Two Stocks by Black – Sholes Time Fractional Order Non – Linear Partial Differential Equation
The BS equations with fractional order two asset price model give the better prediction of options pricing in the monetary market. In this paper, the changed form of BS-condition with two asset price models dependent on the Liovelle-Caputo derivative for good predictions of options prices is utilized. The analytical solution is demonstrated in form of convergent infinite series and obtained by the properties of Samdu Transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信