大规模判别度量学习

P. Kirchner, Matthias Boehm, B. Reinwald, D. Sow, J. M. Schmidt, D. Turaga, A. Biem
{"title":"大规模判别度量学习","authors":"P. Kirchner, Matthias Boehm, B. Reinwald, D. Sow, J. M. Schmidt, D. Turaga, A. Biem","doi":"10.1109/IPDPSW.2014.181","DOIUrl":null,"url":null,"abstract":"We consider the learning of a distance metric, using the Localized Supervised Metric Learning (LSML) scheme, that discriminates entities characterized by high dimensional feature attributes, with respect to labels assigned to each entity. LSML is a supervised learning scheme that learns a Mahalanobis distance grouping together features with the same label and repulsing features with different labels. In this paper, we propose an efficient and scalable implementation of LSML allowing us to scale significantly and process large data sets, both in terms of dimensions and instances. This implementation of LSML is programmed in SystemML with an R-like syntax, and compiled, optimized, and executed on Hadoop. We also propose experimental approaches for the tuning of LSML parameters yielding significant analytical and empirical improvements in terms of discriminative measures such as label prediction accuracy. We present experimental results on both synthetic and real-world data (feature vectors representing patients in an Intensive Care Unit with labels corresponding to different conditions) assessing respectively how well the algorithm scales and how well it works on real world prediction problems.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Large Scale Discriminative Metric Learning\",\"authors\":\"P. Kirchner, Matthias Boehm, B. Reinwald, D. Sow, J. M. Schmidt, D. Turaga, A. Biem\",\"doi\":\"10.1109/IPDPSW.2014.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the learning of a distance metric, using the Localized Supervised Metric Learning (LSML) scheme, that discriminates entities characterized by high dimensional feature attributes, with respect to labels assigned to each entity. LSML is a supervised learning scheme that learns a Mahalanobis distance grouping together features with the same label and repulsing features with different labels. In this paper, we propose an efficient and scalable implementation of LSML allowing us to scale significantly and process large data sets, both in terms of dimensions and instances. This implementation of LSML is programmed in SystemML with an R-like syntax, and compiled, optimized, and executed on Hadoop. We also propose experimental approaches for the tuning of LSML parameters yielding significant analytical and empirical improvements in terms of discriminative measures such as label prediction accuracy. We present experimental results on both synthetic and real-world data (feature vectors representing patients in an Intensive Care Unit with labels corresponding to different conditions) assessing respectively how well the algorithm scales and how well it works on real world prediction problems.\",\"PeriodicalId\":153864,\"journal\":{\"name\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2014.181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑使用局部监督度量学习(LSML)方案来学习距离度量,该方案根据分配给每个实体的标签来区分具有高维特征属性的实体。LSML是一种有监督学习方案,它学习一种Mahalanobis距离,将具有相同标签的特征分组在一起,并排斥具有不同标签的特征。在本文中,我们提出了一种高效且可扩展的LSML实现,允许我们在维度和实例方面显著扩展和处理大型数据集。LSML的这个实现是用SystemML编程的,具有类似r的语法,并在Hadoop上编译、优化和执行。我们还提出了调整LSML参数的实验方法,在标签预测精度等判别度量方面产生了显着的分析和经验改进。我们展示了合成数据和真实世界数据的实验结果(代表重症监护病房患者的特征向量,标签对应不同的条件),分别评估了算法的扩展效果以及它在现实世界预测问题上的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Scale Discriminative Metric Learning
We consider the learning of a distance metric, using the Localized Supervised Metric Learning (LSML) scheme, that discriminates entities characterized by high dimensional feature attributes, with respect to labels assigned to each entity. LSML is a supervised learning scheme that learns a Mahalanobis distance grouping together features with the same label and repulsing features with different labels. In this paper, we propose an efficient and scalable implementation of LSML allowing us to scale significantly and process large data sets, both in terms of dimensions and instances. This implementation of LSML is programmed in SystemML with an R-like syntax, and compiled, optimized, and executed on Hadoop. We also propose experimental approaches for the tuning of LSML parameters yielding significant analytical and empirical improvements in terms of discriminative measures such as label prediction accuracy. We present experimental results on both synthetic and real-world data (feature vectors representing patients in an Intensive Care Unit with labels corresponding to different conditions) assessing respectively how well the algorithm scales and how well it works on real world prediction problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信