局部基函数用于计算机断层扫描重建表示的一些结果

G. W. Wecksung, K. Hanson
{"title":"局部基函数用于计算机断层扫描重建表示的一些结果","authors":"G. W. Wecksung, K. Hanson","doi":"10.1364/iact.1984.tuc5","DOIUrl":null,"url":null,"abstract":"In computed tomography (CT) as well as other areas of digital image processing, a discrete representation of a function of two variables on a continuous domain is needed. One approach is to specify the values of the function on an equally spaced grid and interpolate for intermediate values. A more general approach Is to represent the function as a linear combination of basis functions [1,2]. Iterative CT algorithms, e.g., ART, require repeated evaluation of line or strip projection integrals over a trial object function (reconstruction). If the first representation is selected, then we must get interpolated values in order to perform the integration. The interpolation can be performed in a variety of ways; each way makes implicit use of a set of basis functions. If nearest-neighbor interpolation is chosen, the resulting set of basis functions are square pixels centered on the sample points. For bilinear interpolation we get a bilinear tent function and for band-limited interpolation we get a product of separable sine functions with zeros at all sample points but one.","PeriodicalId":133192,"journal":{"name":"Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on the use of local basis functions for reconstruction representation in computed tomography\",\"authors\":\"G. W. Wecksung, K. Hanson\",\"doi\":\"10.1364/iact.1984.tuc5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In computed tomography (CT) as well as other areas of digital image processing, a discrete representation of a function of two variables on a continuous domain is needed. One approach is to specify the values of the function on an equally spaced grid and interpolate for intermediate values. A more general approach Is to represent the function as a linear combination of basis functions [1,2]. Iterative CT algorithms, e.g., ART, require repeated evaluation of line or strip projection integrals over a trial object function (reconstruction). If the first representation is selected, then we must get interpolated values in order to perform the integration. The interpolation can be performed in a variety of ways; each way makes implicit use of a set of basis functions. If nearest-neighbor interpolation is chosen, the resulting set of basis functions are square pixels centered on the sample points. For bilinear interpolation we get a bilinear tent function and for band-limited interpolation we get a product of separable sine functions with zeros at all sample points but one.\",\"PeriodicalId\":133192,\"journal\":{\"name\":\"Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/iact.1984.tuc5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/iact.1984.tuc5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算机断层扫描(CT)以及数字图像处理的其他领域中,需要在连续域上对两个变量的函数进行离散表示。一种方法是在等距网格上指定函数的值,并对中间值进行插值。更一般的方法是将函数表示为基函数的线性组合[1,2]。迭代CT算法,例如ART,需要在一个试验对象函数(重建)上重复评估线或条的投影积分。如果选择了第一个表示,那么我们必须得到插值值才能执行积分。插值可以以多种方式执行;每种方法都隐式地使用了一组基函数。如果选择最近邻插值,则结果基函数集是以样本点为中心的正方形像素。对于双线性插值,我们得到一个双线性的帐篷函数,对于带限插值,我们得到一个可分离正弦函数的乘积,在除了一个以外的所有采样点上都是0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on the use of local basis functions for reconstruction representation in computed tomography
In computed tomography (CT) as well as other areas of digital image processing, a discrete representation of a function of two variables on a continuous domain is needed. One approach is to specify the values of the function on an equally spaced grid and interpolate for intermediate values. A more general approach Is to represent the function as a linear combination of basis functions [1,2]. Iterative CT algorithms, e.g., ART, require repeated evaluation of line or strip projection integrals over a trial object function (reconstruction). If the first representation is selected, then we must get interpolated values in order to perform the integration. The interpolation can be performed in a variety of ways; each way makes implicit use of a set of basis functions. If nearest-neighbor interpolation is chosen, the resulting set of basis functions are square pixels centered on the sample points. For bilinear interpolation we get a bilinear tent function and for band-limited interpolation we get a product of separable sine functions with zeros at all sample points but one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信